POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS

被引:74
|
作者
Bayad, Abdelmejid [1 ]
Hamahata, Yoshinori [2 ]
机构
[1] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
polylogarithms; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials; FORMULA;
D O I
10.2206/kyushujm.65.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate special generalized Bernoulli polynomials that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [41] A survey on the theory of multiple Bernoulli polynomials and multiple L-functions of root systems
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    INFINITE ANALYSIS 2010: DEVELOPMENTS IN QUANTUM INTEGRABLE SYSTEMS, 2011, B28 : 99 - 120
  • [42] Some identities and recurrences relations for the q-Bernoulli and q-Euler polynomials
    Kurt, Veli
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1397 - 1404
  • [43] NOTES ON THE PARAMETRIC POLY-TANGENT POLYNOMIALS
    Kurt, Burak
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (3-4): : 301 - 309
  • [44] Incomplete Multi-Poly-Bernoulli Numbers and Multiple Zeta Values
    Komatsu, Takao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2029 - 2040
  • [45] Incomplete Multi-Poly-Bernoulli Numbers and Multiple Zeta Values
    Takao Komatsu
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2029 - 2040
  • [46] A NOTE ON POLY-FUBINI POLYNOMIALS OF TWO VARIABLES
    Acala, Nestor G.
    Macababat, Maida B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2021, 12 (01): : 1 - 13
  • [47] Type 2 Degenerate Poly-Euler Polynomials
    Lee, Dae Sik
    Kim, Hye Kyung
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2020, 12 (06):
  • [48] GENERALIZED POLY-CAUCHY POLYNOMIALS AND THEIR INTERPOLATING FUNCTIONS
    Komatsu, Takao
    Luca, Florian
    Pita Ruiz, Claudio De J. V.
    COLLOQUIUM MATHEMATICUM, 2014, 136 (01) : 13 - 30
  • [49] Recurrence Relations On The Generelizad Poly-Genocchi Polynomials
    Kurt, Burak
    Bilgic, Secil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [50] On Multi Poly-Genocchi Polynomials with Parameters a, b and c
    Corcino, Roberto B.
    Laurente, Mark P.
    Vega, Mary Ann Ritzell P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (03): : 444 - 458