POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS

被引:75
作者
Bayad, Abdelmejid [1 ]
Hamahata, Yoshinori [2 ]
机构
[1] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
polylogarithms; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials; FORMULA;
D O I
10.2206/kyushujm.65.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate special generalized Bernoulli polynomials that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 9 条
[1]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[2]  
Arakawa T., 1999, Comment. Math. Univ. St. Pauli, V48, P159
[3]   The Arakawa-Kaneko zeta function [J].
Coppo, Marc-Antoine ;
Candelpergher, Bernard .
RAMANUJAN JOURNAL, 2010, 22 (02) :153-162
[4]  
Hamahata Y., 2007, Integers: Electronic Journal of Combinatorial Number Theory, V7, pA46
[5]  
HAMAHATA Y, 2007, J INTEGER SEQUENCES, V10
[6]  
Kaneko M., 1997, MULTIPLE ZETA VALUES
[7]  
KANEKO M, 1997, NATURE, V9, P221
[8]  
Kim MS, 2000, INDIAN J PURE AP MAT, V31, P1455
[9]  
Sánchez-Peregrino R, 2002, FIBONACCI QUART, V40, P362