POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS

被引:74
|
作者
Bayad, Abdelmejid [1 ]
Hamahata, Yoshinori [2 ]
机构
[1] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
polylogarithms; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials; FORMULA;
D O I
10.2206/kyushujm.65.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate special generalized Bernoulli polynomials that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [1] ON MULTI POLY-BERNOULLI POLYNOMIALS
    Corcino, Cristina B.
    Corcino, Roberto B.
    Komatsu, Takao
    Jolany, Hassan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (02): : 21 - 34
  • [2] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Ken Kamano
    Takao Komatsu
    The Ramanujan Journal, 2014, 33 : 301 - 313
  • [3] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Kamano, Ken
    Komatsu, Takao
    RAMANUJAN JOURNAL, 2014, 33 (02): : 301 - 313
  • [4] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [5] A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND POLY-BERNOULLI POLYNOMIALS
    Pathan, M. A.
    Khan, Waseem A.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 317 - 330
  • [6] On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials
    Ryoo, Cheon Seoung
    Khan, Waseem A.
    MATHEMATICS, 2020, 8 (03)
  • [7] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    Dolgy, Dmitry V.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [8] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Dae San Kim
    Taekyun Kim
    Toufik Mansour
    Dmitry V Dolgy
    Advances in Difference Equations, 2015
  • [9] On a duality formula for certain sums of values of poly-Bernoulli polynomials and its application
    Kaneko, Masanobu
    Sakurai, Fumi
    Tsumura, Hirofumi
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (01): : 203 - 218
  • [10] Some Explicit Formulas of Hurwitz Lerch type Poly-Cauchy Polynomials and Poly-Bernoulli Polynomials
    Lacpao, Noel B.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1747 - 1761