Formation of positive cluster ions LinBr (n=2-7) and ionization energies studied by thermal ionization mass spectrometry

被引:20
作者
Velickovic, S. R. [1 ]
Dustebek, J. B. [1 ]
Veljkovic, F. M. [1 ]
Veljkovic, M. V. [1 ]
机构
[1] Univ Belgrade, VINCA Inst Nucl Sci, Belgrade 11001, Serbia
来源
JOURNAL OF MASS SPECTROMETRY | 2012年 / 47卷 / 05期
关键词
superalkali; LiBr; clusters; ionization energy; thermal ionization; THERMOCHEMICAL PROPERTIES; ELECTRONIC-STRUCTURE; LITHIUM CLUSTERS; POTENTIALS; STABILITY; LI2F; DISSOCIATION; EVOLUTION; MOLECULE; METAL;
D O I
10.1002/jms.3001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Clusters of the type LinX (X = halides) can be considered as potential building blocks of cluster-assembly materials. In this work, LinBr (n = 2-7) clusters were obtained by a thermal ionization source of modified design and selected by a magnetic sector mass spectrometer. Positive ions of the LinBr (n = 4-7) cluster were detected for the first time. The order of ion intensities was Li2Br+ Li4Br+ > Li5Br+ > Li6Br+ > Li3Br+. The ionization energies (IEs) were measured and found to be 3.95 +/- 0.20 eV for Li2Br, 3.92 +/- 0.20 eV for Li3Br, 3.93 +/- 0.20 eV for Li4Br, 4.08 +/- 0.20 eV for Li5Br, 4.14 +/- 0.20 eV for Li6Br and 4.19 +/- 0.20 eV for Li7Br. All of these clusters have a much lower ionization potential than that of the lithium atom, so they belong to the superalkali class. The IEs of LinBr (n = 2-4) are slightly lower than those in the corresponding small Li-n or LinH clusters, whereas the IEs of LinBr are very similar to those of Li-n or LinH for n = 5 and 6. The thermal ionization source of modified design is an important means for simultaneously obtaining and measuring the IEs of LinBr (n = 2-7) clusters (because their ions are thermodynamically stable with respect to the loss of lithium atoms in the gas phase) and increasingly contributes toward the development of clusters for practical applications. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:627 / 631
页数:5
相关论文
共 51 条
[1]   Structure and bonding in small neutral alkali halide clusters [J].
Aguado, A ;
Ayuela, A ;
Lopez, JM ;
Alonso, JA .
PHYSICAL REVIEW B, 1997, 56 (23) :15353-15360
[2]  
[Anonymous], 2004, Introduction to Cluster Dynamics
[3]  
Benedek G., 1988, ELEMENTAL MOL CLUSTE
[4]  
BERONIUS, 1978, ACTA CHEM SCAND A, V32, P423
[5]   EVOLUTION OF THE ELECTRONIC-STRUCTURE OF LITHIUM CLUSTERS BETWEEN 4 AND 8 ATOMS [J].
BLANC, J ;
BONACICKOUTECKY, V ;
BROYER, M ;
CHEVALEYRE, J ;
DUGOURD, P ;
KOUTECKY, J ;
SCHEUCH, C ;
WOLF, JP ;
WOSTE, L .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :1793-1809
[6]   DISSOCIATION PATHWAYS AND BINDING-ENERGIES OF LITHIUM CLUSTERS FROM EVAPORATION EXPERIMENTS [J].
BRECHIGNAC, C ;
BUSCH, H ;
CAHUZAC, P ;
LEYGNIER, J .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (08) :6992-7002
[7]   LES SOLUTIONS DE BROMURE DE LITHIUM DANS LETHER DIETHYLIQUE - AUTO-ASSOCIATION ET SOLVATATION [J].
CHABANEL, M .
JOURNAL DE CHIMIE PHYSIQUE, 1966, 63 (09) :1143-&
[8]   ANALYSIS OF POLARIZABILITIES, POTENTIALS, AND GEOMETRIES OF ALKALI-HALIDE DIMERS [J].
CHAUHAN, RS ;
SHARMA, SC ;
SHARMA, SB ;
SHARMA, BS .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (06) :4397-4406
[9]   ISOMERS OF (LIBR)N N = 4, 5, 8 AND THEIR INTERCONVERSION [J].
CHENG, VKW ;
ROSE, JP ;
BERRY, RS .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1993, 26 (1-4) :195-197
[10]   Cluster-Assembled Materials [J].
Claridge, Shelley A. ;
Castleman, A. W., Jr. ;
Khanna, Shiv N. ;
Murray, Christopher B. ;
Sen, Ayusman ;
Weiss, Paul S. .
ACS NANO, 2009, 3 (02) :244-255