The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter

被引:143
作者
Sorel, Sophie [1 ,2 ]
Lyons, Philip E. [1 ,2 ]
De, Sukanta [1 ,2 ]
Dickerson, Janet C. [3 ]
Coleman, Jonathan N. [1 ,2 ]
机构
[1] Trinity Coll Dublin, Ctr Res Adapt Nanostruct & Nanodevices, Dublin 2, Ireland
[2] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[3] Seashell Technol, La Jolla, CA USA
基金
爱尔兰科学基金会;
关键词
REDUCED GRAPHENE OXIDE; THIN-FILMS; SOLAR-CELLS; TRANSPARENT; PERCOLATION; POLYMER; ELECTRODES; DEPOSITION;
D O I
10.1088/0957-4484/23/18/185201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have characterized the optoelectrical properties of networks of silver nanowires as a function of nanowire dimension by measuring transmittance (T) and sheet resistance (R-s) for a large number of networks of different thicknesses fabricated from wires of different diameters (D) and lengths (L). We have analysed these data using both bulk-like and percolative models. We find the network DC conductivity to scale linearly with wire length while the optical conductivity is approximately invariant with nanowire length. The ratio of DC to optical conductivity, often taken as a figure of merit for transparent conductors, scales approximately as L/D. Interestingly, the percolative exponent, n, scales empirically as D-2, while the percolative figure of merit, Pi, displays large values at low D. As high T and low R-s are associated with low n and high Pi, these data are consistent with improved optoelectrical performance for networks of low-D wires. We predict that networks of wires with D = 25 nm could give sheet resistance as low as 25 Omega/rectangle for T = 90%.
引用
收藏
页数:9
相关论文
共 57 条
[1]   TUNNELING AND NONUNIVERSAL CONDUCTIVITY IN COMPOSITE-MATERIALS [J].
BALBERG, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (12) :1305-1308
[2]   Limits on the continuum-percolation transport exponents [J].
Balberg, I .
PHYSICAL REVIEW B, 1998, 57 (21) :13351-13354
[3]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[4]   Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm:: Applicability of Bloch-Gruneisen theorem [J].
Bid, Aveek ;
Bora, Achyut ;
Raychaudhuri, A. K. .
PHYSICAL REVIEW B, 2006, 74 (03)
[5]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[6]   Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films [J].
Dan, Budhadipta ;
Irvin, Glen C. ;
Pasquali, Matteo .
ACS NANO, 2009, 3 (04) :835-843
[7]   The effects of percolation in nanostructured transparent conductors [J].
De, Sukanta ;
Coleman, Jonathan N. .
MRS BULLETIN, 2011, 36 (10) :774-781
[8]   Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors [J].
De, Sukanta ;
King, Paul J. ;
Lyons, Philip E. ;
Khan, Umar ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (12) :7064-7072
[9]   Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions [J].
De, Sukanta ;
King, Paul J. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Doherty, Evelyn M. ;
Hernandez, Yenny ;
Duesberg, Georg S. ;
Coleman, Jonathan N. .
SMALL, 2010, 6 (03) :458-464
[10]   Transparent, Flexible, and Highly Conductive Thin Films Based on Polymer - Nanotube Composites [J].
De, Sukanta ;
Lyons, Philip E. ;
Sorel, Sophie ;
Doherty, Evelyn M. ;
King, Paul J. ;
Blau, Werner J. ;
Nirmalraj, Peter N. ;
Boland, John J. ;
Scardaci, Vittorio ;
Joimel, Jerome ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (03) :714-720