Existence of full-Hausdorff-dimension invariant measures of dynamical systems with dimension metrics

被引:12
作者
Dai, XP [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
37A35; 37B40; 28D20;
D O I
10.1007/s00013-005-1117-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the open problem of the existence of invariant measures of full Hausdorff dimension. Let f : X -> X be a continuous transformation of a compact topological space X. The author introduces a dimension metric to (X, f) and shows that the dynamical system (X, f) has an f-invariant Borel probability measure mu of full Hausdorff dimension, in the sense of a dimension metric d d; namely, HD(d) over cap(mu) = HD(d) over cap(X). If (X, f) is a positively expansive system over a compact metric space X, then there exists a compatible "almost" dimension metric d with respect to which (X, f) has a unique invariant Borel probability measure mu of full Hausdorff dimension.
引用
收藏
页码:470 / 480
页数:11
相关论文
共 19 条
[1]  
BOWEN R, 1970, LNM, V470
[2]  
Bowen R., 1979, PUBLICATIONS MATH IH, V50, P11, DOI [10.1007/BF02684767, DOI 10.1007/BF02684767]
[3]  
BRIN M, 1983, LECT NOTES MATH, V1007, P30
[4]  
COLEBROOK CM, 1970, MICH MATH J, V17, P103
[5]  
Coven E., 1980, GLOBAL THEORY DYNAMI, V819
[6]  
DAI X, 1998, RES REP MATH I MATH, V7, P18
[7]  
DAI X, IN PRESS DISCRET CON
[8]   Some relations between Hausdorff-dimensions and entropies [J].
Dai, XP ;
Zhou, ZL ;
Geng, XY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (10) :1068-1075
[9]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[10]   SOME COMPACT INVARIANT-SETS FOR HYPERBOLIC LINEAR AUTOMORPHISMS OF TORII [J].
FATHI, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :191-204