Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression

被引:70
作者
Arslan, Olcay [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Stat, TR-06100 Ankara, Turkey
关键词
LAD; LASSO; Median regression; Robustness; Regression; WLAD-LASSO; MODEL SELECTION; LIKELIHOOD; SHRINKAGE;
D O I
10.1016/j.csda.2011.11.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The weighted least absolute deviation (WLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to achieve robust parameter estimation and variable selection in regression simultaneously. Compared with the LAD-LASSO method, the weighted LAD-LASSO (WLAD-LASSO) method will resist to the heavy-tailed errors and outliers in explanatory variables. Properties of the WLAD-LASSO estimators are investigated. A small simulation study and an example are provided to demonstrate the superiority of the WLAD-LASSO method over the LAD-LASSO method in the presence of outliers in the explanatory variables and the heavy-tailed error distribution. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1952 / 1965
页数:14
相关论文
共 24 条
[1]   LEVERAGE AND BREAKDOWN IN L1 REGRESSION [J].
ELLIS, SP ;
MORGENTHALER, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :143-148
[2]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[3]  
Gao X., 2008, THESIS U IOWA
[4]   A mathematical programming approach for improving the robustness of least sum of absolute deviations regression [J].
Giloni, A ;
Sengupta, B ;
Simonoff, JS .
NAVAL RESEARCH LOGISTICS, 2006, 53 (04) :261-271
[5]   Robust weighted LAD regression [J].
Giloni, Avi ;
Simonoff, Jeffrey S. ;
Sengupta, Bhaskar .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) :3124-3140
[6]   LOCATION OF SEVERAL OUTLIERS IN MULTIPLE-REGRESSION DATA USING ELEMENTAL SETS [J].
HAWKINS, DM ;
BRADU, D ;
KASS, GV .
TECHNOMETRICS, 1984, 26 (03) :197-208
[7]   Least angle and l(1) penalized regression: A review [J].
Hesterberg, Tim ;
Choi, Nam Hee ;
Meier, Lukas ;
Fraley, Chris .
STATISTICS SURVEYS, 2008, 2 :61-93
[8]   Robust regression with both continuous and binary regressors [J].
Hubert, M ;
Rousseeuw, PJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) :153-163
[9]   MODEL SELECTION FOR LEAST ABSOLUTE DEVIATIONS REGRESSION IN SMALL SAMPLES [J].
HURVICH, CM ;
TSAI, CL .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) :259-265
[10]   REGRESSION AND TIME-SERIES MODEL SELECTION IN SMALL SAMPLES [J].
HURVICH, CM ;
TSAI, CL .
BIOMETRIKA, 1989, 76 (02) :297-307