The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation

被引:19
作者
Klibanov, Michael V. [1 ]
Romanov, Vladimir G. [2 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2015年 / 23卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
Long standing problem; phaseless inverse scattering; Schrodinger equation; reconstruction formula; Radon transform; UNIQUENESS; MODULUS;
D O I
10.1515/jiip-2015-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A long standing problem is completely solved here for the first time. This problem was posed by K. Chadan and P. C. Sabatier in their classical book "Inverse Problems in Quantum Scattering Theory", Springer, New York, 1977. The inverse scattering problem of the reconstruction of the unknown potential with a compact support in the three-dimensional Schrodinger equation is considered. Only the modulus of the scattering complex-valued wave field is known, whereas the phase is unknown. It is shown that the unknown potential can be reconstructed via the inverse Radon transform. This solution has potential applications in imaging of nanostructures.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 31 条
[1]   Inverse problem on the line without phase information [J].
Aktosun, T ;
Sacks, PE .
INVERSE PROBLEMS, 1998, 14 (02) :211-224
[2]   Statistical Analysis of Phase-Inversion Neutron Specular Reflectivity [J].
Berk, N. F. ;
Majkrzak, C. F. .
LANGMUIR, 2009, 25 (07) :4132-4144
[3]  
Chadan K., 1989, Inverse Problems in Quantum Scattering Theory, V2nd
[4]   PHASE RECONSTRUCTION VIA NONLINEAR LEAST-SQUARES [J].
DOBSON, DC .
INVERSE PROBLEMS, 1992, 8 (04) :541-557
[5]   Phase retrieval algorithms: a personal tour [J].
Fienup, James R. .
APPLIED OPTICS, 2013, 52 (01) :45-56
[6]   Regularization of an autoconvolution problem in ultrashort laser pulse characterization [J].
Gerth, Daniel ;
Hofmann, Bernd ;
Birkholz, Simon ;
Koke, Sebastian ;
Steinmeyer, Guenter .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (02) :245-266
[7]  
GILBARG D., 1984, ELLIPTIC PARTIAL DIF, V2nd
[8]  
Isakov V., 2006, Inverse Problems for Partial Differential Equations, V2nd
[9]   Inverse scattering for surface impedance from phase-less far field data [J].
Ivanyshyn, Olha ;
Kress, Rainer .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (09) :3443-3452
[10]   Huygens' principle and iterative methods in inverse obstacle scattering [J].
Ivanyshyn, Olha ;
Kress, Rainer ;
Serranho, Pedro .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (04) :413-429