Efficient implementation of pseudochaotic piecewise linear maps with high digitization accuracies

被引:3
作者
Addabbo, Tommaso [1 ]
De Caro, Davide [2 ]
Fort, Ada [1 ]
Petra, Nicola [2 ]
Rocchi, Santina [1 ]
Vignoli, Valerio [1 ]
机构
[1] Univ Siena, Dept Informat Engn, I-53100 Siena, Italy
[2] Univ Naples Federico 2, Dept Elect & Telecommun Engn, I-80125 Naples, Italy
关键词
discrete chaos; digital circuits; digital arithmetics; sequences; CHAOTIC MAP; CRYPTOSYSTEM; PERIOD;
D O I
10.1002/cta.702
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we discuss the efficient implementation of pseudochaotic piecewise linear maps with high digitization accuracies, taking the R'enyi chaotic map as a reference. The proposed digital architectures are based on a novel algorithmic approach that uses carry save adders for the nonlinear arithmetic modular calculations arising when computing piecewise linear maps with a finite precision. As a result, the system can be implemented by digital circuits obtaining high throughputs, which are not dependent on the digital resolution while involving a hardware complexity linearly proportional to the number of bits used for representing the discretized state. The proposed solutions result to be particularly suitable for the implementation of pseudorandom number generators based on pseudochaos, or for the definition of efficient digital blocks that can be integrated in most of the pseudochaotic cyphers proposed in the literature. Copyright (c) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 21 条
[1]   A class of maximum-period nonlinear congruential generators derived from the Renyi chaotic map [J].
Addabbo, T. ;
Alioto, M. ;
Fort, A. ;
Pasini, A. ;
Rocchi, S. ;
Vignoli, V. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (04) :816-828
[2]   An efficient implementation of PRNGs based on the digital sawtooth map [J].
Alioto, M ;
Bernardi, S ;
Fort, A ;
Rocchi, S ;
Vignoli, V .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2004, 32 (06) :615-627
[3]   Theory and practice of chaotic cryptography [J].
Amigo, J. M. ;
Kocarev, L. ;
Szczepanski, J. .
PHYSICS LETTERS A, 2007, 366 (03) :211-216
[4]   Discrete entropy [J].
Amigo, J. M. ;
Kocarev, L. ;
Tomovski, I. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 228 (01) :77-85
[5]   An algorithmic view of pseudochaos [J].
Chirikov, BV ;
Vivaldi, F .
PHYSICA D, 1999, 129 (3-4) :223-235
[6]  
Coomes Brian, 1996, 6 LECT DYNAMICAL SYS, P163
[7]   BINARY COUNTER WITH COUNTING PERIOD OF 1/2 ADDER INDEPENDENT OF COUNTER SIZE [J].
ERCEGOVAC, M ;
LANG, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1989, 36 (06) :924-926
[8]   Truly random number generators based on non-autonomous continuous-time chaos [J].
Ergun, S. ;
Ozoguz, S. .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2010, 38 (01) :1-24
[9]  
Koc C.K., 1995, RSA Hardware Implementation
[10]   Discrete chaos -: I:: Theory [J].
Kocarev, Ljupco ;
Szczepanski, Janusz ;
Amigo, Jose M. ;
Tomovski, Igor .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (06) :1300-1309