Regional Mapping of Flow and Wall Characteristics of Intracranial Aneurysms

被引:41
作者
Cebral, Juan R. [1 ]
Duan, Xinjie [2 ]
Gade, Piyusha S. [3 ]
Chung, Bong Jae [1 ]
Mut, Fernando [1 ]
Aziz, Khaled [4 ]
Robertson, Anne M. [2 ,3 ]
机构
[1] George Mason Univ, Dept Bioengn, 4400 Univ Dr,MSN 2A1, Fairfax, VA 22030 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA USA
[4] Allegheny Gen Hosp, Dept Neurosurg, Pittsburgh, PA 15212 USA
关键词
Cerebral aneurysms; Hemodynamics; Collagen architecture; Computational fluid dynamics; Multi-photon microscopy; Micro-CT; Specimen resection; MECHANICAL-PROPERTIES; RUPTURE; HEMODYNAMICS; RISK; HISTOLOGY; MODELS; IMAGE;
D O I
10.1007/s10439-016-1682-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The evolution of intracranial aneurysms (IAs) is thought to be driven by progressive wall degradation in response to abnormal hemodynamics. Previous studies focused on the relationship between global hemodynamics and wall properties. However, hemodynamics, wall structure and mechanical properties of cerebral aneurysms can be non-uniform across the aneurysm wall. Therefore, the aim of this work is to introduce a methodology for mapping local hemodynamics to local wall structure in resected aneurysm specimens. This methodology combines image-based computational fluid dynamics, tissue resection, micro-CT imaging of resected specimens mounted on 3D-printed aneurysm models, alignment to 3D vascular models, multi-photon microscopy of the wall, and regional mapping of hemodynamics and wall properties. This approach employs a new 3D virtual marking tool for surgeons to delineate the location of the resected specimen directly on the 3D model, while in the surgical suite. The case of a middle cerebral artery aneurysm is used to illustrate the application of this methodology to the assessment of the relationship between local wall shear stress and local wall properties including collagen fiber organization and wall geometry. This methodology can similarly be used to study the relationship between local intramural stresses and local wall structure.
引用
收藏
页码:3553 / 3567
页数:15
相关论文
共 29 条
[1]   Micro-computed Tomography Assessment of Vertebral Column Defects in Retinoic Acid-Induced Rat Model of Myelomeningocele [J].
Barbe, Mary F. ;
Adiga, Radhika ;
Gordiienko, Oleg ;
Pleshko, Nancy ;
Selzer, Michael E. ;
Krynska, Barbara .
BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY, 2014, 100 (06) :453-462
[2]   Greater Rupture Risk for Familial as Compared to Sporadic Unruptured Intracranial Aneurysms [J].
Broderick, Joseph P. ;
Brown, Robert D., Jr. ;
Sauerbeck, Laura ;
Hornung, Richard ;
Huston, John, III ;
Woo, Daniel ;
Anderson, Craig ;
Rouleau, Guy ;
Kleindorfer, Dawn ;
Flaherty, Matthew L. ;
Meissner, Irene ;
Foroud, Tatiana ;
Moomaw, E. Charles J. ;
Connolly, E. Sander .
STROKE, 2009, 40 (06) :1952-1957
[3]   Flow-area relationship in internal carotid and vertebral arteries [J].
Cebral, J. R. ;
Castro, M. A. ;
Putman, C. M. ;
Alperin, N. .
PHYSIOLOGICAL MEASUREMENT, 2008, 29 (05) :585-594
[4]   Wall Mechanical Properties and Hemodynamics of Unruptured Intracranial Aneurysms [J].
Cebral, J. R. ;
Duan, X. ;
Chung, B. J. ;
Putman, C. ;
Aziz, K. ;
Robertson, A. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (09) :1695-1703
[5]   Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity [J].
Cebral, JR ;
Castro, MA ;
Appanaboyina, S ;
Putman, CM ;
Millan, D ;
Frangi, AF .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (04) :457-467
[6]   Computational fluid dynamics modeling of intracranial aneurysms: Qualitative comparison with cerebral angiography [J].
Cebral, Juan R. ;
Pergolizzi, Richard S., Jr. ;
Putman, Christopher M. .
ACADEMIC RADIOLOGY, 2007, 14 (07) :804-813
[7]   Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project) [J].
Costalat, V. ;
Sanchez, M. ;
Ambard, D. ;
Thines, L. ;
Lonjon, N. ;
Nicoud, F. ;
Brunel, H. ;
Lejeune, J. P. ;
Dufour, H. ;
Bouillot, P. ;
Lhaldky, J. P. ;
Kouri, K. ;
Segnarbieux, F. ;
Maurage, C. A. ;
Lobotesis, K. ;
Villa-Uriol, M. C. ;
Zhang, C. ;
Frangi, A. F. ;
Mercier, G. ;
Bonafe, A. ;
Sarry, L. ;
Jourdan, F. .
JOURNAL OF BIOMECHANICS, 2011, 44 (15) :2685-2691
[8]  
Dempere-Marco L, 2006, LECT NOTES COMPUT SC, V4191, P438
[9]   Finite Element Analysis of Abdominal Aortic Aneurysms: Predicted Rupture Risk Correlates With Aortic Wall Histology in Individual Patients [J].
Erhart, Philipp ;
Grond-Ginsbach, Caspar ;
Hakimi, Maani ;
Lasitschka, Felix ;
Dihlmann, Susanne ;
Boeckler, Dittmar ;
Hyhlik-Duerr, Alexander .
JOURNAL OF ENDOVASCULAR THERAPY, 2014, 21 (04) :556-564
[10]   PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models [J].
Ford, Matthew D. ;
Nikolov, Hristo N. ;
Milner, Jaques S. ;
Lownie, Stephen P. ;
DeMont, Edwin M. ;
Kalata, Wojciech ;
Loth, Francis ;
Holdsworth, David W. ;
Steinman, David A. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (02)