Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis

被引:35
作者
Arellano-Valle, Reinaldo B. [1 ]
Castro, Luis M. [2 ]
Genton, Marc G. [3 ,4 ]
Gomez, Hector W. [2 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
[2] Univ Concepcion, Dept Estadist, Fac Ciencias Fis & Matemat, Concepcion, Chile
[3] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[4] Univ Geneva, Dept Econometr, Geneva, Switzerland
来源
BAYESIAN ANALYSIS | 2008年 / 3卷 / 03期
基金
瑞士国家科学基金会;
关键词
Posterior analysis; regression model; shape parameter; skewness; skew-normal distribution; symmetry;
D O I
10.1214/08-BA320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of shape mixtures of skewed distributions and study some of its main properties. We discuss a Bayesian interpretation and some invariance results of the proposed class. We develop a Bayesian analysis of the skew-normal, skew-generalized-normal, skew-normal-t and skew-t-normal linear regression models under some special prior specifications for the model parameters. In particular, we show that the full posterior of the skew-normal regression model parameters is proper under an arbitrary proper prior for the shape parameter and noninformative prior for the other parameters. We implement a convenient hierarchical representation in order to obtain the corresponding posterior analysis. We illustrate our approach with an application to a real dataset on characteristics of Australian male athletes.
引用
收藏
页码:513 / 539
页数:27
相关论文
共 30 条
[1]  
[Anonymous], 2000, Bayesian theory
[2]   Bayesian inference for skew-normal linear mixed models [J].
Arellano-Valle, R. B. ;
Bolfarine, H. ;
Lachos, V. H. .
JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) :663-682
[3]   Bayesian inference in spherical linear models: robustness and conjugate analysis [J].
Arellano-Valle, RB ;
del Pino, G ;
Iglesias, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (01) :179-197
[4]   On fundamental skew distributions [J].
Arellano-Valle, RB ;
Genton, MG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 96 (01) :93-116
[5]  
Arellano-Valle RB, 2004, COMMUN STAT-THEOR M, V33, P1465, DOI [10.1081/STA-120037254, 10.1081/sta-120037254]
[6]   Definition and probabilistic properties of skew-distributions [J].
Arellano-Valle, RB ;
del Pino, G ;
San Martín, E .
STATISTICS & PROBABILITY LETTERS, 2002, 58 (02) :111-121
[7]   A unified view on skewed distributions arising from selections [J].
Arellano-Valle, Reinaldo B. ;
Branco, Marcia D. ;
Genton, Marc G. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (04) :581-601
[8]   On the unification of families of skew-normal distributions [J].
Arellano-Valle, Reinaldo B. ;
Azzalini, Adelchi .
SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (03) :561-574
[9]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[10]   The skew-normal distribution and related multivariate families [J].
Azzalini, A .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) :159-188