Rapid convergence of a Galerkin projection of the KdV equation

被引:11
作者
Kalisch, H [1 ]
机构
[1] NTNU, NO-7491 Trondheim, Norway
关键词
D O I
10.1016/j.crma.2005.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, it is shown that a Fourier Galerkin approximation of the Korteweg-de Vries equation with periodic boundary conditions converges exponentially fast if the initial data can be continued analytically to a strip about the real axis.
引用
收藏
页码:457 / 460
页数:4
相关论文
共 11 条
[1]   Spatial analyticity properties of nonlinear waves [J].
Bona, JL ;
Grujic, Z .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (03) :345-360
[2]  
Boussinesq J., 1872, J. Math. Pures Appl, V17, P55
[3]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[4]   ANALYTICITY OF SOLUTIONS OF THE KORTEWEG-DEVRIES EQUATION [J].
HAYASHI, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (06) :1738-1743
[5]  
KAPPELER T, GLOBAL WEL POSEDNESS
[6]   NONLINEAR EVOLUTION-EQUATIONS AND ANALYTICITY .1. [J].
KATO, T ;
MASUDA, K .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (06) :455-467
[7]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[8]  
KORTEWEG DJ, 1895, PHILOS MAG, V39, P422, DOI DOI 10.1080/14786449508620739
[9]   ERROR ANALYSIS FOR SPECTRAL APPROXIMATION OF THE KORTEWEG-DEVRIES EQUATION [J].
MADAY, Y ;
QUARTERONI, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1988, 22 (03) :499-529
[10]   ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVOLUTION-EQUATIONS .3. NUMERICAL, KORTEWEG-DEVRIES EQUATION [J].
TAHA, TR ;
ABLOWITZ, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (02) :231-253