Theory of the polarization of highly charged ions in storage rings: Production, preservation, observation and application to the search for a violation of the fundamental symmetries

被引:24
作者
Bondarevskaya, A. [2 ]
Prozorov, A. [2 ]
Labzowsky, L. [2 ,3 ]
Plunien, G. [1 ]
Liesen, D. [4 ,5 ]
Bosch, F. [4 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[2] St Petersburg State Univ, VA Fock Inst Phys, St Petersburg 198504, Russia
[3] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
[4] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany
[5] Heidelberg Univ, Fac Phys & Astron, D-69120 Heidelberg, Germany
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2011年 / 507卷 / 01期
关键词
Polarized highly charged ions; Hyperfine-quenched transitions; Parity nonconservation effects; Anapole moment; Electric dipole moment; RADIATIVE ELECTRON-CAPTURE; PARITY-NONCONSERVATION; DIPOLE MOMENTS; BEAMS; FEASIBILITY; PROSPECTS; CURRENTS; BOSON;
D O I
10.1016/j.physrep.2011.06.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Theoretical concepts for the production, preservation and control of polarized highly charged ion beams in storage rings are investigated. It is argued that hydrogen-like ions can be polarized efficiently by optical pumping of the Zeeman sublevels of ground state hyperfine levels and that the maximum achievable nuclear polarization exceeds 90%. In order to study the preservation of the polarization during the ion motion through the magnetic system of the ring, the concept of the instantaneous quantization axis is introduced. It is suggested that the employment of "Siberian snakes" may help to preserve the ion beam polarization in the ring. The control of the beam polarization can be achieved by different methods: by measuring the Stokes parameters for the emitted photons or by observing the angular dependence of the transition rates for polarized ions. The important motivation for the production of polarized ion beams is the possibility to observe parity nonconservation effects in the hyperfine-quenched transitions in helium-like highly charged ions, where these effects can reach an unprecedented high value for atomic physics. The possible observation of parity nonconservation effects connected with the nuclear anapole moment is also discussed. A method for the observation of the electric dipole moment of an electron in a storage ring with a polarized highly charged ion beam is proposed. This method allows, in principle, to improve the existing boundaries for the electric dipole moment of an electron. However, the requirements of the corresponding experiment are very stringent. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 91 条
[1]   QED calculation of transition probabilities in two-electron ions [J].
Andreev, Oleg Yu. ;
Labzowsky, Leonti N. ;
Plunien, Guenter .
PHYSICAL REVIEW A, 2009, 79 (03)
[2]  
[Anonymous], 1964, Soviet Physics Doklady
[3]   QED calculation of the n=1 and n=2 energy levels in He-like ions -: art. no. 062104 [J].
Artemyev, AN ;
Shabaev, VM ;
Yerokhin, VA ;
Plunien, G ;
Soff, G .
PHYSICAL REVIEW A, 2005, 71 (06)
[4]   Enhanced electric dipole moment of the muon in the presence of large neutrino mixing [J].
Babu, KS ;
Dutta, B ;
Mohapatra, RN .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5064-5067
[5]   RADIATIVE POLARIZATION OF ELECTRONS IN STORAGE RINGS [J].
BAIER, VN .
SOVIET PHYSICS USPEKHI-USSR, 1972, 14 (06) :695-&
[6]   PRECESSION OF THE POLARIZATION OF PARTICLES MOVING IN A HOMOGENEOUS ELECTROMAGNETIC FIELD [J].
BARGMANN, V ;
MICHEL, L ;
TELEGDI, VL .
PHYSICAL REVIEW LETTERS, 1959, 2 (10) :435-436
[7]  
BARKOV LM, 1978, JETP LETT+, V27, P357
[8]  
Baryshevsky V., 2005, 6 INT C NUCL PHYS ST
[9]  
Bednyakov I., 1999, Phys. Rev. A, V61, P012103
[10]   Improved limit on the muon electric dipole moment [J].
Bennett, G. W. ;
Bousquet, B. ;
Brown, H. N. ;
Bunce, G. ;
Carey, R. M. ;
Cushman, P. ;
Danby, G. T. ;
Debevec, P. T. ;
Deile, M. ;
Deng, H. ;
Deninger, W. ;
Dhawan, S. K. ;
Druzhinin, V. P. ;
Duong, L. ;
Efstathiadis, E. ;
Farley, F. J. M. ;
Fedotovich, G. V. ;
Giron, S. ;
Gray, F. E. ;
Grigoriev, D. ;
Grosse-Perdekamp, M. ;
Grossmann, A. ;
Hare, M. F. ;
Hertzog, D. W. ;
Huang, X. ;
Hughes, V. W. ;
Iwasaki, M. ;
Jungmann, K. ;
Kawall, D. ;
Kawamura, M. ;
Khazin, B. I. ;
Kindem, J. ;
Krienen, F. ;
Kronkvist, I. ;
Lam, A. ;
Larsen, R. ;
Lee, Y. Y. ;
Logashenko, I. ;
McNabb, R. ;
Meng, W. ;
Mi, J. ;
Miller, J. P. ;
Mizumachi, Y. ;
Morse, W. M. ;
Nikas, D. ;
Onderwater, C. J. G. ;
Orlov, Y. ;
Oezben, C. S. ;
Paley, J. M. ;
Peng, Q. .
PHYSICAL REVIEW D, 2009, 80 (05)