Generalized symmetric polynomials and an approximate de Finetti representation

被引:5
作者
Bobkov, SG [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
symmetric polynomials; quadratics induction; de Finetti representation;
D O I
10.1007/s10959-005-3509-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures on product spaces which are symmetric under permutations of coordinates, we studs the rate of approximation by mixtures of product measures.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 9 条
[1]  
Blum J.R, 1958, CAN J MATH, V10, P222, DOI [DOI 10.4153/CJM-1958-026-0, 10.4153/CJM-1958-026-0]
[2]   Concentration of normalized sums and a central limit theorem for noncorrelated random variables [J].
Bobkov, SG .
ANNALS OF PROBABILITY, 2004, 32 (04) :2884-2907
[3]  
DIACONIS P, 1980, ANN PROBAB, V8, P745, DOI 10.1214/aop/1176994663
[4]   EXCHANGEABLE PROCESSES NEED NOT BE MIXTURES OF INDEPENDENT, IDENTICALLY DISTRIBUTED RANDOM-VARIABLES [J].
DUBINS, LE ;
FREEDMAN, DA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (02) :115-132
[5]  
Freedman D., 1977, J AM STAT ASSOC, V73, P681
[6]  
Hewitt E., 1955, Transactions of the American Mathematical Society, V80, P470, DOI [10.1090/S0002-9947-1955-0076206-8, DOI 10.1090/S0002-9947-1955-0076206-8]
[7]   Empirical central limit theorems for exchangeable random variables [J].
Jiang, XX ;
Hahn, MG .
STATISTICS & PROBABILITY LETTERS, 2002, 59 (01) :75-81
[8]   THE CENTRAL-LIMIT-THEOREM FOR EXCHANGEABLE RANDOM-VARIABLES WITHOUT MOMENTS [J].
KLASS, M ;
TEICHER, H .
ANNALS OF PROBABILITY, 1987, 15 (01) :138-153
[9]  
Prasolov V, 2001, ALGORITHMS COMPUTATI, V11