Low complexity bit-parallel multiplier for GF(2m) defined by all-one polynomials using redundant representation

被引:19
作者
Chang, KY [1 ]
Hong, DW [1 ]
Cho, HS [1 ]
机构
[1] Elect & Telecommun Res Inst, Informat Secur Res Div, Taejon 305350, South Korea
关键词
bit-parallel multiplier; redundant representation; finite field arithmetic; AOP; Karatsuba method;
D O I
10.1109/TC.2005.199
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new bit-parallel multiplier for the finite field GF(2(m)) defined by an irreducible all-one polynomial. In order to reduce the complexity of the multiplier, we introduce a redundant representation and use the well-known multiplication method proposed by Karatsuba. The main idea is to combine the redundant representation and the Karatsuba method to design an efficient bit-parallel multiplier. As a result, the proposed multiplier requires about 25 percent fewer AND/XOR gates than the previously proposed multipliers using an all-one polynomial, while it has almost the same time delay as the previously proposed ones.
引用
收藏
页码:1628 / 1630
页数:3
相关论文
共 21 条
[1]  
CIET M, 2001, P IND 2001 DEC, P108
[2]   A new representation of elements of finite fields GF(2m) yielding small complexity arithmetic circuits [J].
Drolet, G .
IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (09) :938-946
[3]   Low complexity bit-parallel multipliers for GF(2m) with generator polynomial xm+xk+1 [J].
Elia, M ;
Leone, M ;
Visentin, C .
ELECTRONICS LETTERS, 1999, 35 (07) :551-552
[4]   A redundant representation of GF(qn) for designing arithmetic circuits [J].
Geiselmann, W ;
Steinwandt, R .
IEEE TRANSACTIONS ON COMPUTERS, 2003, 52 (07) :848-853
[5]   A MODIFIED MASSEY-OMURA PARALLEL MULTIPLIER FOR A CLASS OF FINITE-FIELDS [J].
HASAN, MA ;
WANG, MZ ;
BHARGAVA, VK .
IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (10) :1278-1280
[6]   STRUCTURE OF PARALLEL MULTIPLIERS FOR A CLASS OF FIELDS GF(2M) [J].
ITOH, T ;
TSUJII, S .
INFORMATION AND COMPUTATION, 1989, 83 (01) :21-40
[7]  
Kim CH, 2002, IEEE T COMPUT, V51, P90, DOI 10.1109/12.980019
[8]  
Knuth D., 1998, ART COMPUTER PROGRAM, V2
[9]   Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields [J].
Koc, CK ;
Sunar, B .
IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (03) :353-356
[10]   Bit-parallel systolic multipliers for GF(2m) fields defined by all-one and equally spaced polynomials [J].
Lee, CY ;
Lu, EH ;
Lee, JY .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (05) :385-393