Formulation and implementation of stress-driven and/or strain-driven computational homogenization for finite strain

被引:15
|
作者
van Dijk, N. P. [1 ]
机构
[1] Uppsala Univ, Dept Engn Sci, Appl Mech, Box 534, SE-75121 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
homogenization; implementation; periodic boundary conditions; finite strain; second Piola-Kirchhoff stress; Green-Lagrange strain; TO-MACRO TRANSITIONS; HETEROGENEOUS MATERIALS; DISCRETIZED MICROSTRUCTURES; COMPOSITE-MATERIALS; ELASTICITY; MECHANICS; ENERGY;
D O I
10.1002/nme.5198
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a homogenization approach that can be used in the geometrically nonlinear regime for stress-driven and strain-driven homogenization and even a combination of both. Special attention is paid to the straightforward implementation in combination with the finite-element method. The formulation follows directly from the principle of virtual work, the periodic boundary conditions, and the Hill-Mandel principle of macro-homogeneity. The periodic boundary conditions are implemented using the Lagrange multiplier method to link macroscopic strain to the boundary displacements of the computational model of a representative volume element. We include the macroscopic strain as a set of additional degrees of freedom in the formulation. Via the Lagrange multipliers, the macroscopic stress naturally arises as the associated forces' that are conjugate to the macroscopic strain displacements'. In contrast to most homogenization schemes, the second Piola-Kirchhoff stress and Green-Lagrange strain have been chosen for the macroscopic stress and strain measures in this formulation. The usage of other stress and strain measures such as the first Piola-Kirchhoff stress and the deformation gradient is discussed in the Appendix. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1009 / 1028
页数:20
相关论文
共 50 条
  • [41] Strain-driven formation of rubrene crystalline films on Bi(001)
    Lan, Meng
    Xiong, Zu-Hong
    Li, Guo-Qing
    Shao, Ting-Na
    Xie, Jia-Le
    Yang, Xiu-Fan
    Wang, Jun-Zhong
    Liu, Ying
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [42] Strain-driven Kovacs-like memory effect in glasses
    Tong, Yu
    Song, Lijian
    Gao, Yurong
    Fan, Longlong
    Li, Fucheng
    Yang, Yiming
    Mo, Guang
    Liu, Yanhui
    Shui, Xiaoxue
    Zhang, Yan
    Gao, Meng
    Huo, Juntao
    Qiao, Jichao
    Pineda, Eloi
    Wang, Jun-Qiang
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [43] A Strain-Driven Morphotropic Phase Boundary in BiFeO3
    Zeches, R. J.
    Rossell, M. D.
    Zhang, J. X.
    Hatt, A. J.
    He, Q.
    Yang, C. -H.
    Kumar, A.
    Wang, C. H.
    Melville, A.
    Adamo, C.
    Sheng, G.
    Chu, Y. -H.
    Ihlefeld, J. F.
    Erni, R.
    Ederer, C.
    Gopalan, V.
    Chen, L. Q.
    Schlom, D. G.
    Spaldin, N. A.
    Martin, L. W.
    Ramesh, R.
    SCIENCE, 2009, 326 (5955) : 977 - 980
  • [44] Strain-driven self-organization of nanostructures on semiconductor surfaces
    V.A. Shchukin
    D. Bimberg
    Applied Physics A, 1998, 67 : 687 - 700
  • [45] Strain-driven magnetism in LaCoO3 thin films
    Gupta, Kapil
    Mahadevan, Priya
    PHYSICAL REVIEW B, 2009, 79 (02):
  • [46] Strain-driven self-organization of nanostructures on semiconductor surfaces
    Shchukin, VA
    Bimberg, D
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (06): : 687 - 700
  • [47] HYDROSTANNATION OF CYCLOPROPENE - STRAIN-DRIVEN RADICAL-ADDITION REACTION
    YAMAGO, S
    EJIRI, S
    NAKAMURA, E
    CHEMISTRY LETTERS, 1994, (10) : 1889 - 1892
  • [48] Characterizing a strain-driven phase transition in VO2
    Kikuzuki, T.
    Lippmaa, M.
    APPLIED PHYSICS LETTERS, 2010, 96 (13)
  • [49] Curvature-induced geometric potential in strain-driven nanostructures
    Ortix, Carmine
    Kiravittaya, Suwit
    Schmidt, Oliver G.
    van den Brink, Jeroen
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [50] Strain-Driven Mound Formation of Substrate under Epitaxial Nanoparticles
    Gupta, Tanya
    Hannon, James B.
    Tersoff, J.
    Tromp, Rudolf M.
    Ott, John A.
    Bruley, John
    Steingart, Daniel A.
    NANO LETTERS, 2015, 15 (01) : 34 - 38