The Effect of UV Illumination on the Room Temperature Detection of Vaporized Ammonium Nitrate by a ZnO Coated Nanospring-Based Sensor

被引:10
作者
Bastatas, Lyndon D. [1 ]
Wagle, Phadindra [1 ]
Echeverria, Elena [1 ]
Austin, Aaron J. [1 ]
McIlroy, David N. [1 ]
机构
[1] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
关键词
nanospring; ammonium nitrate; gas sensor; room-temperature operation; UV-illumination; GAS-SENSING PROPERTIES; IN-SITU; OXIDE; MECHANISMS; NO2; ACTIVATION; SURFACE; NANOSTRUCTURES; SENSITIVITY; FABRICATION;
D O I
10.3390/ma12020302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of UV illumination on the room temperature electrical detection of ammonium nitrate vapor was examined. The sensor consists of a self-assembled ensemble of silica nanosprings coated with zinc oxide. UV illumination mitigates the baseline drift of the resistance relative to operation under dark conditions. It also lowers the baseline resistance of the sensor by 25% compared to dark conditions. At high ammonium nitrate concentrations (120 ppm), the recovery time after exposure is virtually identical with or without UV illumination. At low ammonium nitrate concentrations (20 ppm), UV illumination assists with refreshing of the sensor by stimulating analyte desorption, thereby enabling the sensor to return to its baseline resistance. Under dark conditions and low ammonium nitrate concentrations, residual analyte builds up with each exposure, which inhibits the sensor from returning to its original baseline resistance and subsequently impedes sensing due to permanent occupation of absorption sites.
引用
收藏
页数:12
相关论文
共 62 条
  • [1] On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity
    Ahn, M. -W.
    Park, K. -S.
    Heo, J. -H.
    Kim, D. -W.
    Choi, K. J.
    Park, J. -G.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2009, 138 (01) : 168 - 173
  • [2] Gas sensing properties of defect-controlled ZnO-nanowire gas sensor
    Ahn, M. -W.
    Park, K. -S.
    Heo, J. -H.
    Park, J. -G.
    Kim, D. -W.
    Choi, K. J.
    Lee, J. -H.
    Hong, S. -H.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (26)
  • [3] Electrical barriers in the ZnO varistor grain boundaries
    Alim, MA
    Li, ST
    Liu, FY
    Cheng, PF
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (02): : 410 - 427
  • [4] Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube:: A density functional theory study
    An, Wei
    Wu, Xiaojun
    Zeng, X. C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) : 5747 - 5755
  • [5] Conduction model of metal oxide gas sensors
    Barsan, N
    Weimar, U
    [J]. JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) : 143 - 167
  • [6] Emergent Electrical Properties of Ensembles of 1D Nanostructures and Their Impact on Room Temperature Electrical Sensing of Ammonium Nitrate Vapor
    Bastatas, Lyndon D.
    Echeverria-Mora, Elena
    Wagle, Phadindra
    Mainali, Punya
    Austin, Aaron
    Mcllroy, David N.
    [J]. ACS SENSORS, 2018, 3 (11): : 2367 - 2374
  • [7] The surface and materials science of tin oxide
    Batzill, M
    Diebold, U
    [J]. PROGRESS IN SURFACE SCIENCE, 2005, 79 (2-4) : 47 - 154
  • [8] Binions R, 2013, WOODH PUB SER ELECT, P433, DOI 10.1533/9780857098665.4.433
  • [9] Recognizing Physisorption and Chemisorption in Carbon Nanotubes Gas Sensors by Double Exponential Fitting of the Response
    Calvi, Andrea
    Ferrari, Alberto
    Sbuelz, Luca
    Goldoni, Andrea
    Modesti, Silvio
    [J]. SENSORS, 2016, 16 (05):
  • [10] The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor
    Chang, JF
    Kuo, HH
    Leu, IC
    Hon, MH
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2002, 84 (2-3) : 258 - 264