ON THE NON-VANISHING OF DIRICHLET L-FUNCTIONS AT THE CENTRAL POINT

被引:0
作者
Fiorilli, Daniel [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
EQUI-DISTRIBUTION; PRIMES; DERIVATIVES; LIMITATIONS; NUMBER; ZEROS;
D O I
10.1093/qmath/hau038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the consequences of natural conjectures of Montgomery type on the non-vanishing of Dirichlet L-functions at the central point. We first justify these conjectures using probabilistic arguments. We then show using a result of Bombieri, Friedlander and Iwaniec, and a result of the author that they imply that almost all Dirichlet L-functions do not vanish at the central point. We also deduce a quantitative upper bound for the proportion of Dirichlet L-functions for which L(1/2, chi) = 0.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 24 条
[1]   LIMITING DISTRIBUTIONS OF THE CLASSICAL ERROR TERMS OF PRIME NUMBER THEORY [J].
Akbary, Amir ;
Ng, Nathan ;
Shahabi, Majid .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (03) :743-780
[2]  
[Anonymous], 1980, RIEMANN HYPOTHESIS H
[3]  
BALASUBRAMANIAN R, 1992, ANN SCI ECOLE NORM S, V25, P567
[4]  
Balasubramanian R., 1980, Acta Arithmetica, V38, P273, DOI DOI 10.4064/AA-38-3-273-283
[5]  
BOMBIERI E, 1989, J AM MATH SOC, V2, P215, DOI DOI 10.2307/1990976.MR976723
[6]   NON-VANISHING OF DIRICHLET L-FUNCTIONS AT THE CENTRAL POINT [J].
Bui, H. M. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (08) :1855-1881
[7]   CENTRAL VALUES OF DERIVATIVES OF DIRICHLET L-FUNCTIONS [J].
Bui, H. M. ;
Milinovich, Micah B. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (02) :371-388
[8]   Real zeros of quadratic Dirichlet L-functions [J].
Conrey, JB ;
Soundararajan, K .
INVENTIONES MATHEMATICAE, 2002, 150 (01) :1-44
[9]  
Davenport H., 2000, Graduate Texts in Mathematics, V74
[10]  
Fiorilli D., 2011, ARXIV11113896MATHNT