Recruitment and organization of ESCRT-0 and ubiquitinated cargo via condensation

被引:18
作者
Banjade, Sudeep [1 ,2 ]
Zhu, Lu [1 ,2 ]
Jorgensen, Jeffrey R. [1 ,2 ]
Suzuki, Sho W. [1 ,2 ]
Emr, Scott D. [1 ,2 ]
机构
[1] Cornell Univ, Weill Inst Cell & Mol Biol, Ithaca, NY 14850 USA
[2] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14850 USA
关键词
SORTING COMPLEX; ARCHITECTURE; MECHANISM; MODEL;
D O I
10.1126/sciadv.abm5149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The general mechanisms by which ESCRTs (Endosomal Sorting Complexes Required for Transport) are specifically recruited to various membranes, and how ESCRT subunits are spatially organized remain central questions in cell biology. At the endosome and lysosomes, ubiquitination of membrane proteins triggers ESCRT-mediated substrate recognition and degradation. Using the yeast lysosome/vacuole, we define the principles by which substrate engagement by ESCRTs occurs at this organelle. We find that multivalent interactions between ESCRT-0 and polyubiquitin are critical for substrate recognition at yeast vacuoles, with a lower-valency requirement for cargo engagement at endosomes. Direct recruitment of ESCRT-0 induces dynamic foci on the vacuole membrane and forms fluid condensates in vitro with polyubiquitin. We propose that self-assembly of early ESCRTs induces condensation, an initial step in ESCRT assembly/nucleation at membranes. This property can be tuned specifically at various organelles by modulating the number of binding interactions.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding [J].
Alonso Y Adell, Manuel ;
Migliano, Simona M. ;
Upadhyayula, Srigokul ;
Bykov, Yury S. ;
Sprenger, Simon ;
Pakdel, Mehrshad ;
Vogel, Georg F. ;
Jih, Gloria ;
Skillern, Wesley ;
Behrouzi, Reza ;
Babst, Markus ;
Schmidt, Oliver ;
Hess, Michael W. ;
Briggs, John A. G. ;
Kirchhausen, Tomas ;
Teis, David .
ELIFE, 2017, 6
[2]   Biomolecular condensates: organizers of cellular biochemistry [J].
Banani, Salman F. ;
Lee, Hyun O. ;
Hyman, Anthony A. ;
Rosen, Michael K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) :285-298
[3]   Design principles of the ESCRT-III Vps24-Vps2 module [J].
Banjade, Sudeep ;
Shah, Yousuf H. ;
Tang, Shaogeng ;
Emr, Scott D. .
ELIFE, 2021, 10
[4]  
Banjade S, 2019, METHODS MOL BIOL, V1998, P105, DOI 10.1007/978-1-4939-9492-2_8
[5]   Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly [J].
Banjade, Sudeep ;
Tang, Shaogeng ;
Shah, Yousuf H. ;
Emr, Scott D. .
ELIFE, 2019, 8
[6]   Phase Transitions of Multivalent Proteins Can Promote Clustering of Membrane Receptors [J].
Banjade, Sudeep ;
Rosen, Michael K. .
ELIFE, 2014, 3
[7]   Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis [J].
Carlson, Lars-Anders ;
Briggs, John A. G. ;
Glass, Baerbel ;
Riches, James D. ;
Simon, Martha N. ;
Johnson, Marc C. ;
Mueller, Barbara ;
Gruenewald, Kay ;
Kraeusslich, Hans-Georg .
CELL HOST & MICROBE, 2008, 4 (06) :592-599
[8]   Stoichiometry controls activity of phase-separated clusters of actin signaling proteins [J].
Case, Lindsay B. ;
Zhang, Xu ;
Ditlev, Jonathon A. ;
Rosen, Michael K. .
SCIENCE, 2019, 363 (6431) :1093-+
[9]   A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission [J].
Flower, Thomas G. ;
Takahashi, Yoshinori ;
Hudait, Arpa ;
Rose, Kevin ;
Tjahjono, Nicholas ;
Pak, Alexander J. ;
Yokom, Adam L. ;
Liang, Xinwen ;
Wang, Hong-Gang ;
Bouamr, Fadila ;
Voth, Gregory A. ;
Hurley, James H. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (06) :570-+
[10]   ESCRT-dependent cargo sorting at multivesicular endosomes [J].
Frankel, E. B. ;
Audhya, Anjon .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2018, 74 :4-10