Adding control to arbitrary unknown quantum operations

被引:115
作者
Zhou, Xiao-Qi [1 ,2 ]
Ralph, Timothy C. [3 ,4 ]
Kalasuwan, Pruet [1 ,2 ]
Zhang, Mian [1 ,2 ,5 ]
Peruzzo, Alberto [1 ,2 ]
Lanyon, Benjamin P. [6 ]
O'Brien, Jeremy L. [1 ,2 ]
机构
[1] Univ Bristol, Ctr Quantum Photon, HH Wills Phys Lab, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
[3] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[4] Univ Queensland, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4072, Australia
[5] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[6] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck 25, Austria
基金
英国工程与自然科学研究理事会;
关键词
ENTANGLEMENT; COMPUTATION; NETWORKS;
D O I
10.1038/ncomms1392
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Controlled exchange interaction between pairs of neutral atoms in an optical lattice [J].
Anderlini, Marco ;
Lee, Patricia J. ;
Brown, Benjamin L. ;
Sebby-Strabley, Jennifer ;
Phillips, William D. ;
Porto, J. V. .
NATURE, 2007, 448 (7152) :452-456
[2]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[3]   Optical nondestructive controlled-NOT gate without using entangled photons [J].
Bao, Xiao-Hui ;
Chen, Teng-Yun ;
Zhang, Qiang ;
Yang, Jian ;
Zhang, Han ;
Yang, Tao ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2007, 98 (17)
[4]   Efficient networks for quantum factoring [J].
Beckman, D ;
Chari, AN ;
Devabhaktuni, S ;
Preskill, J .
PHYSICAL REVIEW A, 1996, 54 (02) :1034-1063
[5]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[6]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[7]   Experimental Realization of a Controlled-NOT Gate with Four-Photon Six-Qubit Cluster States [J].
Gao, Wei-Bo ;
Xu, Ping ;
Yao, Xing-Can ;
Guehne, Otfried ;
Cabello, Adan ;
Lu, Chao-Yang ;
Peng, Cheng-Zhi ;
Chen, Zeng-Bing ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2010, 104 (02)
[8]   Realization of a photonic controlled-NOT gate sufficient for quantum computation [J].
Gasparoni, S ;
Pan, JW ;
Walther, P ;
Rudolph, T ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (02) :020504-1
[9]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[10]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328