Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation

被引:5
作者
Williams, Logan Z. J. [1 ,2 ]
Fawaz, Abdulah [2 ]
Glasser, Matthew F. [3 ,4 ]
Edwards, A. David [1 ,5 ,6 ]
Robinson, Emma C. [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Perinatal Imaging & Hlth, Ctr Developing Brain, London SE1 7EH, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Biomed Engn, London SE1 7EH, England
[3] Washington Univ, Med Sch, Dept Radiol, St Louis, MO 63110 USA
[4] Washington Univ, Med Sch, Dept Neurosci, St Louis, MO 63110 USA
[5] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Forens & Neurodev Sci, London SE5 8AF, England
[6] Kings Coll London, MRC Ctr Neurodev Disorders, London SE1 1UL, England
来源
MACHINE LEARNING IN CLINICAL NEUROIMAGING | 2021年 / 13001卷
关键词
Human connectome project; Geometric deep learning; Cortical parcellation; HUMAN CEREBRAL-CORTEX; SEGMENTATION; REGIONS; AREAS;
D O I
10.1007/978-3-030-87586-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the topographic heterogeneity of cortical organisation is an essential step towards precision modelling of neuropsychiatric disorders. While many cortical parcellation schemes have been proposed, few attempt to model inter-subject variability. For those that do, most have been proposed for high-resolution research quality data, without exploration of how well they generalise to clinical quality scans. In this paper, we benchmark and ensemble four different geometric deep learning models on the task of learning the Human Connectome Project (HCP) multimodal cortical parcellation. We employ Monte Carlo dropout to investigate model uncertainty with a view to propagate these labels to new datasets. Models achieved an overall Dice overlap ratio of >0.85 +/- 0.02. Regions with the highest mean and lowest variance included V1 and areas within the parietal lobe, and regions with the lowest mean and highest variance included areas within the medial frontal lobe, lateral occipital pole and insula. Qualitatively, our results suggest that more work is needed before geometric deep learning methods are capable of fully capturing atypical cortical topographies such as those seen in area 55b. However, information about topographic variability between participants was encoded in vertex-wise uncertainty maps, suggesting a potential avenue for projection of this multimodal parcellation to new datasets with limited functional MRI, such as the UK Biobank.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 32 条
[1]   Correspondences between retinotopic areas and myelin maps in human visual cortex [J].
Abdollahi, Rouhollah O. ;
Kolster, Hauke ;
Glasser, Matthew F. ;
Robinson, Emma C. ;
Coalson, Timothy S. ;
Dierker, Donna ;
Jenkinson, Mark ;
Van Essen, David C. ;
Orban, Guy A. .
NEUROIMAGE, 2014, 99 :509-524
[2]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[3]   VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images [J].
Chen, Hao ;
Dou, Qi ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
NEUROIMAGE, 2018, 170 :446-455
[4]  
Defferrard M, 2016, ADV NEUR IN, V29
[5]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[6]  
Fey Matthias, 2019, P INT C LEARN REPR
[7]   Measuring structural-functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment [J].
Frost, Martin A. ;
Goebel, Rainer .
NEUROIMAGE, 2012, 59 (02) :1369-1381
[8]  
Gal Y, 2016, PR MACH LEARN RES, V48
[9]  
Given N.A., 2021, BENCHMARKING GEOMETR
[10]   The Human Connectome Project's neuroimaging approach [J].
Glasser, Matthew F. ;
Smith, Stephen M. ;
Marcus, Daniel S. ;
Andersson, Jesper L. R. ;
Auerbach, Edward J. ;
Behrens, Timothy E. J. ;
Coalson, Timothy S. ;
Harms, Michael P. ;
Jenkinson, Mark ;
Moeller, Steen ;
Robinson, Emma C. ;
Sotiropoulos, Stamatios N. ;
Xu, Junqian ;
Yacoub, Essa ;
Ugurbil, Kamil ;
Van Essen, David C. .
NATURE NEUROSCIENCE, 2016, 19 (09) :1175-1187