Freeze tolerance and physiological changes during cold acclimation of giant reed [Arundo donax (L.)]

被引:21
|
作者
Pompeiano, A. [1 ]
Vita, F. [2 ]
Miele, S. [3 ]
Guglielminetti, L. [2 ]
机构
[1] Univ Fed Alagoas, Ctr Agr Sci, Lab Plant Physiol, BR-57072900 Maceio, AL, Brazil
[2] Univ Pisa, Dept Agr Food & Environm, Pisa, Italy
[3] INSTM, Natl Interuniv Consortium Mat Sci & Technol, Florence, Italy
关键词
cold hardiness; controlled freezing; lethal temperature; proline; soluble sugars; LOW-TEMPERATURE; CARBOHYDRATE; BERMUDAGRASS; PROLINE; L; GENOTYPES;
D O I
10.1111/gfs.12097
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Arundo donax L. (Poaceae), giant reed, is a rhizomatous shrubby grass that is cultivated in subtropical and warm temperate regions for a multitude of uses. Recently, it has been identified as a leading sustainable, non-food crop for lignocellulosic biofuels due to its low ecological and agronomic demands. Lack of cold hardiness may limit its diffusion into colder areas of the transition zone. The objectives of this study were to (i) quantify freeze tolerance (LT50) of cold-acclimated and non-acclimated Arundo donax L. plants using reproducible, controlled environment conditions, (ii) determine the effect of prolonged exposure to freeze stress on tolerance by keeping plants at a constant, sublethal temperature and (iii) study the relationship of non-structural carbohydrates (total soluble sugars, glucose, fructose and sucrose) and proline accumulation with cold hardiness. In vitro-propagated plants of the Honduran and Hungarian ecotypes of Arundo donax L. were chosen for this study. Cold acclimation treatment was imposed for 1 week using a controlled environment chamber set at 10 degrees C and with a 12-h photoperiod of 200 mu mol m(-2) s(-1) photosynthetically active radiation. Freeze tolerance ranged from -12.8 degrees C (Honduran) to -16.4 degrees C (Hungarian ecotype). In all the organs analysed, total soluble sugars significantly increased during cold acclimation, with concentrations between 1.8- and 4.7-fold higher than in non-acclimated plants. The higher concentrations of sugars and proline in cold-acclimated plants were positively associated with enhanced giant reed freeze tolerance (2.9 degrees C lower). Our results confirm that during cold acclimation, metabolic changes related to increased freezing tolerance occur in giant reed.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 50 条
  • [21] Analysis of chromosome number and speculations on the origin of Arundo donax L. (Giant Reed)
    Bucci, A.
    Cassani, E.
    Landoni, M.
    Cantaluppi, E.
    Pilu, R.
    CYTOLOGY AND GENETICS, 2013, 47 (04) : 237 - 241
  • [22] Use of giant reed (Arundo donax L.) for polymer composites obtaining: a mapping review
    Suarez, Luis
    Ortega, Zaida
    Barczewski, Mateusz
    Cunningham, Eoin
    CELLULOSE, 2023, 30 (08) : 4793 - 4812
  • [23] Comparative growth of giant reed (Arundo donax L.) from Florida, Texas, and California
    Spencer, David F.
    Stocker, R. K.
    Liow, P. -S.
    Whitehand, L. C.
    Ksander, G. G.
    Fox, A. M.
    Everitt, J. H.
    Quinn, L. D.
    JOURNAL OF AQUATIC PLANT MANAGEMENT, 2008, 46 : 89 - 96
  • [24] Analysis of the properties of particleboard Palm (Washingtonia robusta) and Giant Reed (Arundo donax L.)
    Ferrandez-Villena, M.
    Ferrandez-Garcia, C. E.
    Andreu-Rodriguez, J.
    Garcia-Ortuno, T.
    Ferrandez-Garcia, M. T.
    VIII CONGRESO IBERICO DE AGROINGENIERIA LIBRO DE ACTAS: RETOS DE LA NUEVA AGRICULTURA MEDITERRANEA, 2016, : 461 - 467
  • [25] Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas
    Fernandes, Maria Rosario
    Aguiar, Francisca C.
    Silva, Joao M. N.
    Ferreira, Maria Teresa
    Pereira, Jose M. C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 80 : 80 - 90
  • [26] Use of giant reed (Arundo donax L.) for polymer composites obtaining: a mapping review
    Luis Suárez
    Zaida Ortega
    Mateusz Barczewski
    Eoin Cunningham
    Cellulose, 2023, 30 : 4793 - 4812
  • [27] Physiological Changes during Cold Acclimation of Perennial Ryegrass Accessions Differing in Freeze Tolerance
    Hoffman, Lindsey
    DaCosta, Michelle
    Ebdon, J. Scott
    Watkins, Eric
    CROP SCIENCE, 2010, 50 (03) : 1037 - 1047
  • [28] Nutrient Concentrations and Uptakes in Giant Reed (Arundo donax L.) as Affected by Harvest Time and Frequency
    Dragoni, Federico
    Di Nasso, Nicoletta Nassi O.
    Tozzini, Cristiano
    Bonari, Enrico
    Ragaglini, Giorgio
    BIOENERGY RESEARCH, 2016, 9 (02) : 671 - 681
  • [29] Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop
    Mariani, C.
    Cabrini, R.
    Danin, A.
    Piffanelli, P.
    Fricano, A.
    Gomarasca, S.
    Dicandilo, M.
    Grassi, F.
    Soave, C.
    ANNALS OF APPLIED BIOLOGY, 2010, 157 (02) : 191 - 202
  • [30] Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead
    Guo Zhao-hui
    Miao Xu-feng
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2010, 17 (04): : 770 - 777