Positive solutions for nonlinear singular boundary value problems

被引:23
作者
Agarwal, RP
Wong, FH
Lian, WC
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Taipei Teachers Coll, Dept Math & Sci, Taipei 10659, Taiwan
[3] Natl Kaohsiung Inst Marine Technol, Kaohsiung, Taiwan
关键词
boundary value problem; positive solution; singular equation; existence result;
D O I
10.1016/S0893-9659(98)00158-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under suitable conditions on f(t, u), it is shown that the two-point boundary value problem u "(t) + lambda f(t,u(t)) = 0, in (0,1), u(0) = u(1) = 0, has at least one positive solution for lambda in a compatible interval. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 17 条
[1]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[2]   Singular boundary value problems for superlinear second order ordinary and delay differential equations [J].
Agarwal, RP ;
ORegan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (02) :333-355
[3]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[4]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[5]  
Choi Y. S., 1991, DIFFER INTEGRAL EQU, V4, P891
[6]   SOME CONTINUATION AND VARIATIONAL METHODS FOR POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :207-218
[7]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[8]   EIGENVALUES OF GENERALIZED GELFAND MODELS [J].
FINK, AM ;
GATICA, JA ;
HERNANDEZ, GE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (12) :1453-1468
[9]  
Gelfand I.M., 1963, Amer. Math.Soc. Transl., V2, P295
[10]   Existence of multiple positive solutions of singular boundary value problems [J].
Ha, KS ;
Lee, YH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (08) :1429-1438