共 30 条
Polyamorphism and liquid-liquid phase transition in B2O3
被引:4
作者:
Carini, Giovanni, Jr.
[1
]
Bartolotta, Antonino
[2
]
Di Marco, Gaetano
[2
]
Fazio, Barbara
[2
]
Federico, Mauro
[1
]
Romano, Valentino
[1
]
Carini, Giuseppe
[1
,2
]
D'Angelo, Giovanna
[1
,2
]
机构:
[1] Univ Messina, Dipartimento MIFT, Viale F Stagno Alcontres 31, I-98166 Messina, Italy
[2] CNR, IPCF, Sez Messina, Viale F Stagno Alcontres 37, I-98158 Messina, Italy
关键词:
HIGH-PRESSURE;
CRYSTAL-STRUCTURE;
GLASSES;
TRANSFORMATIONS;
FRAGILITY;
D O I:
10.1103/PhysRevB.105.014105
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Pressure of 4 GPa applied on liquid B2O3 leads to the formation of fourfold coordinated boron atoms and the resulting pressure-quenched glasses reflect the morphology of a "two-species" liquid mainly formed from triangular BO3 and tetrahedral BO4 groups. Raman spectra of compacted glasses show that pressure quenching of the liquid preserves the two species, also favoring the formation of two superstructural units: boroxol rings (B3O6) involving only BO3 units and pentaborate groups (two boroxol rings linked by a fourfold coordinated boron atom). Calorimetric analysis up to the liquid state shows that these polyamorphic glasses are single-phase systems characterized by a single glass transition with a much higher T-g and a lower thermodynamic fragility than those of normal v-B2O3. Above T-g, a sharp endothermic process due to the inverse liquid-liquid phase transition converting the coordination of boron atoms from 4 to 3 is also revealed. It leads to recovering the classical structure (at ambient pressure) of the "single-species" liquid B2O3.
引用
收藏
页数:7
相关论文