Differential expression of cell survival and cell cycle regulatory proteins in cutaneous squamoproliferative lesions

被引:42
作者
Wrone-Smith, T
Bergstrom, J
Quevedo, ME
Reddy, V
Gutierrez-Steil, C
Nickoloff, BJ [1 ]
机构
[1] Loyola Univ, Dept Pathol, Cardinal Bernardin Canc Ctr, Maywood, IL 60153 USA
[2] Loyola Univ, Cardinal Bernardin Canc Ctr, Skin Canc Res Labs, Maywood, IL 60153 USA
关键词
apoptosis; Bcl-x; differentiation; proliferation; keratinocyte; squamous cell carcinoma;
D O I
10.1016/S0923-1811(98)00052-8
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Previous models of cutaneous carcinogenesis have primarily focused on the regulation of keratinocyte (KC) proliferation and differentiation. However, it has become clear in many neoplastic systems that altered rates of cell death and;or inabilty to undergo growth arrest can also contribute to the development of cancer. Apoptosis-regulatory proteins include those that block apoptosis such as Bcl-2 and Bcl-x, whilst a related protein Bax promotes apoptosis. Cell cycle regulatory proteins include those associated with growth arrest, i.e. p21(waf1), p53, and those associated with proliferation, i.e. Ki-67. Paraffin embedded samples from ten different lesions of squamous cell carcinoma (SCC), Bowen's disease (BD), keratoacanthomas (KA), and nine normal adult skin samples were stained by immunohistochemistry to detect expression of Bcl-2, Bcl-x, Bax, Ki-67, p21(waf1), p53 and apoptosis (TUNEL assay). Compared to low levels of Bcl-x and Bcl-2 immunostaining in normal skin, all the squamoproliferative lesions had strong and diffuse KC expression of Bcl-x (> 80%) but minimal to absent KC Bcl-2 expression < 15%. Bax immunopositivity was limited to the basal layer in normal skin and ED. In contrast, by examining serial sections both Bcl-x and Bax appeared to be coexpressed by the majority of malignant KCs in KA and SCC (> 70%). These immunostaining profiles reveal that squamoproliferative lesions, including invasive transformed KCs, preferentially express Bcl-x over Bcl-2, in addition to upregulating their Bax levels. Even though there were numerous TUNEL positive cells in these squamoproliferative lesions, no other evidence of apoptosis was seen reinforcing the necessity to use caution when relying on TUNEL staining for identification of programmed cell death in skin biopsies. Normal sun-exposed skin had low but detectable p53 and rare p21(waf1) KC expression. Significantly higher numbers of p21(waf1) and p53 immunopositive KCs were noted throughout the lesions in ED and SCC in contrast to KA where p53 and ran p21(waf1) immunopositive KCs were primarily limited to the periphery of the tumor cell islands. In general, p53 KC expression was higher in all squamoproliferative lesions and sun-exposed normal skin compared to p21(waf1) expression. Summary of the expression of cell cycle regulatory proteins for both p21(waf1) and p53 KC expression was: SCC > ED > KA, in marked contrast to Ki-67 KC expression which was: BD > KA > SCC. The relatively few malignant cells in SCC that were actively participating in the cell cycle (i.e. Ki-67 positive) suggests that these neoplasms may arise primarily by increased cell survival and resistance to apoptosis rather than by hyperproliferation. These studies emphasize the importance of examining multiple members of protein families that regulate apoptosis, proliferation, growth arrest, and differentiation. It is the overall balance between these cellular phenomena that determine whether a cell remains viable or undergoes programmed cell death and contributes to the appearance of a neoplasm. The overexpression of Bcl-x may confer a survival advantage to malignant KCs unable to growth arrest to repair damaged DNA (mutant p53) and/or undergo terminal differentiation (increased p21(waf1)). Thus, mutation or aberrant expression of such proteins may participate in the multistep process of carcinogenesis that gives rise to these squamoproliferative lesions. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:53 / 67
页数:15
相关论文
共 47 条
[1]   CD28 COSTIMULATION CAN PROMOTE T-CELL SURVIVAL BY ENHANCING THE EXPRESSION OF BCL-X(L) [J].
BOISE, LH ;
MINN, AJ ;
NOEL, PJ ;
JUNE, CH ;
ACCAVITTI, MA ;
LINDSTEN, T ;
THOMPSON, CB .
IMMUNITY, 1995, 3 (01) :87-98
[2]   BCL-X, A BCL-2-RELATED GENE THAT FUNCTIONS AS A DOMINANT REGULATOR OF APOPTOTIC CELL-DEATH [J].
BOISE, LH ;
GONZALEZGARCIA, M ;
POSTEMA, CE ;
DING, LY ;
LINDSTEN, T ;
TURKA, LA ;
MAO, XH ;
NUNEZ, G ;
THOMPSON, CB .
CELL, 1993, 74 (04) :597-608
[3]   BCL-X(L) AND BCL-2 REPRESS A COMMON PATHWAY OF CELL-DEATH [J].
CHAO, DT ;
LINETTE, GP ;
BOISE, LH ;
WHITE, LS ;
THOMPSON, CB ;
KORSMEYER, SJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 1995, 182 (03) :821-828
[4]   Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control [J].
Di Cunto, F ;
Topley, G ;
Calautti, E ;
Hsiao, J ;
Ong, L ;
Seth, PK ;
Dotto, GP .
SCIENCE, 1998, 280 (5366) :1069-1072
[5]  
DOTTO P, 1998, FRONT BIOSCI, V3, P502
[6]   MECHANISMS AND FUNCTIONS OF CELL-DEATH [J].
ELLIS, RE ;
YUAN, JY ;
HORVITZ, HR .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :663-698
[7]   IDENTIFICATION OF PROGRAMMED CELL-DEATH INSITU VIA SPECIFIC LABELING OF NUCLEAR-DNA FRAGMENTATION [J].
GAVRIELI, Y ;
SHERMAN, Y ;
BENSASSON, SA .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :493-501
[8]  
GERDES J, 1991, AM J PATHOL, V138, P867
[9]   IDENTIFICATION OF IMMUNOSUPPRESSANT-INDUCED APOPTOSIS IN A MURINE B-CELL LINE AND ITS PREVENTION BY BCL-X BUT NOT BCL-2 [J].
GOTTSCHALK, AR ;
BOISE, LH ;
THOMPSON, CB ;
QUINTANS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7350-7354
[10]   Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B-irradiated psoriatic plaques express Fas ligand (CD95L) [J].
Gutierrez-Steil, C ;
Wrone-Smith, T ;
Sun, XM ;
Krueger, JG ;
Coven, T ;
Nickoloff, BJ .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (01) :33-39