Exploiting Noise, Non-Linearity, and Feedback for Differential Control of Multiple Synthetic Cells with a Single Optogenetic Input

被引:1
作者
May, Michael P. [1 ]
Munsky, Brian [1 ,2 ]
机构
[1] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA
来源
ACS SYNTHETIC BIOLOGY | 2021年 / 10卷 / 12期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
synthetic biology; autoregulation; gene regulation noise; optogenetic feedback control; single-input-multiple-output control; Maxwell's Demon; REAL-TIME; TRANSLATION DYNAMICS; CIRCUITS; REVEALS; BIOLOGY; SWITCH;
D O I
10.1021/acssynbio.1c00341
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Synthetic biology seeks to develop modular biocircuits that combine to produce complex, controllable behaviors. These designs are often subject to noisy fluctuations and uncertainties, and most modern synthetic biology design processes have focused to create robust components to mitigate the noise of gene expression and reduce the heterogeneity of single-cell responses. However, a deeper understanding of noise can achieve control goals that would otherwise be impossible. We explore how an "Optogenetic Maxwell Demon" could selectively amplify noise to control multiple cells using single-input-multiple-output (SIMO) feedback. Using data-constrained stochastic model simulations and theory, we show how an appropriately selected stochastic SIMO controller can drive multiple different cells to different user-specified configurations irrespective of initial conditions. We explore how controllability depends on cells' regulatory structures, the amount of information available to the controller, and the accuracy of the model used. Our results suggest that gene regulation noise, when combined with optogenetic feedback and non-linear biochemical auto regulation, can achieve synergy to enable precise control of complex stochastic processes.
引用
收藏
页码:3396 / 3410
页数:15
相关论文
共 60 条
[1]  
Arkin A, 1998, GENETICS, V149, P1633
[2]   Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control [J].
Baumschlager, Armin ;
Aoki, Stephanie K. ;
Khammash, Mustafa .
ACS SYNTHETIC BIOLOGY, 2017, 6 (11) :2157-2167
[3]   Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria [J].
Belliveau, Nathan M. ;
Barnes, Stephanie L. ;
Ireland, William T. ;
Jones, Daniel L. ;
Sweredoski, Michael J. ;
Moradian, Annie ;
Hess, Sonja ;
Kinney, Justin B. ;
Phillips, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (21) :E4796-E4805
[4]   Localization of ASH1 mRNA particles in living yeast [J].
Bertrand, E ;
Chartrand, P ;
Schaefer, M ;
Shenoy, SM ;
Singer, RH ;
Long, RM .
MOLECULAR CELL, 1998, 2 (04) :437-445
[5]   Stochastic switching in biology: from genotype to phenotype [J].
Bressloff, Paul C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (13)
[6]   Shaping bacterial population behavior through computer-interfaced control of individual cells [J].
Chait, Remy ;
Ruess, Jakob ;
Bergmiller, Tobias ;
Tkacik, Gasper ;
Guet, Calin C. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Optogenetic Control Reveals Differential Promoter Interpretation of Transcription Factor Nuclear Translocation Dynamics [J].
Chen, Susan Y. ;
Osimiri, Lindsey C. ;
Chevalier, Michael ;
Bugaj, Lukasz J. ;
Nguyen, Taylor H. ;
Greenstein, R. A. ;
Ng, Andrew H. ;
Stewart-Ornstein, Jacob ;
Neves, Lauren T. ;
El-Samad, Hana .
CELL SYSTEMS, 2020, 11 (04) :336-+
[8]   Information Transduction Capacity of Noisy Biochemical Signaling Networks [J].
Cheong, Raymond ;
Rhee, Alex ;
Wang, Chiaochun Joanne ;
Nemenman, Ilya ;
Levchenko, Andre .
SCIENCE, 2011, 334 (6054) :354-358
[9]  
Dey S, 2020, IEEE DECIS CONTR P, P5873, DOI 10.1109/CDC42340.2020.9303901
[10]   Analysis and Control of Genetic Toggle Switches Subject to Periodic Multi-Input Stimulation [J].
Fiore, Davide ;
Guarino, Agostino ;
di Bernardo, Mario .
IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (02) :278-283