Generalized Hirota equation in 2+1 dimensions

被引:62
作者
Maccari, A [1 ]
机构
[1] Tech Inst G Cardano, I-00015 Monterotondo, Rome, Italy
关键词
D O I
10.1063/1.532664
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using an asymptotically exact reduction method based on Fourier expansion and spatiotemporal rescaling, a new integrable and nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained starting from the Kadomtsev-Petviashvili equation. We apply the reduction technique to the Lax pair of the Kadomtsev-Petviashvili equation and demonstrate the integrability property of the new equation, because we obtain the corresponding Lax pair. The new equation reduces to the Hirota equation in the 1+1-dimensional limit. (C) 1998 American Institute of Physics. [S0022-2488(98)03911-5].
引用
收藏
页码:6547 / 6551
页数:5
相关论文
共 15 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   SOLITON SOLUTIONS OF DAVEY-STEWARTSON EQUATION FOR LONG WAVES [J].
ANKER, D ;
FREEMAN, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) :529-540
[3]  
[Anonymous], WHAT IS INTEGRABILIT
[4]   NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .2. [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1988, 4 (01) :11-33
[5]   NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .1. [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1987, 3 (02) :229-262
[6]   NECESSARY CONDITIONS FOR INTEGRABILITY OF NONLINEAR PDES [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1987, 3 (02) :L27-L32
[7]  
CALOGERO F, 1988, ADV ELECT ELECT PHYS, V19, P462
[8]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[9]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809
[10]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539