THE α-INVARIANT AND THOMPSON'S CONJECTURE

被引:3
作者
Tiep, Pham Huu [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
FORUM OF MATHEMATICS PI | 2016年 / 4卷
关键词
KAHLER-EINSTEIN METRICS; FINITE-GROUPS;
D O I
10.1017/fmp.2016.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1981, Thompson proved that, if n >= 1 is any integer and G is any finite subgroup of GL(n) (C), then G has a semi-invariant of degree at most 4n(2). He conjectured that, in fact, there is a universal constant C such that for any n is an element of N and any finite subgroup G < GL(n) (C), G has a semi-invariant of degree at most Cn. This conjecture would imply that the alpha-invariant alpha(G)(Pn-1), as introduced by Tian in 1987, is at most C. We prove Thompson's conjecture in this paper.
引用
收藏
页数:28
相关论文
共 27 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
[2]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[3]   Weakly-exceptional singularities in higher dimensions [J].
Cheltsov, Ivan ;
Shramov, Constantin .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 689 :201-241
[4]  
Cheltsov I, 2011, MATH RES LETT, V18, P1121
[5]   On exceptional quotient singularities [J].
Cheltsov, Ivan ;
Shramov, Constantin .
GEOMETRY & TOPOLOGY, 2011, 15 (04) :1843-1882
[6]  
[Чельцов Иван Анатольевич Cheltsov Ivan Anatol'evich], 2008, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V63, P73
[7]   Semi-continuity of complex singularity exponents and Kahler-Einstein metrics on Fano orbifolds [J].
Demailly, JP ;
Kollár, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (04) :525-556
[8]  
Fulton W., 1991, REPRESENTATION THEOR
[9]   Base sizes and regular orbits for coprime affine permutation groups [J].
Gluck, D ;
Magaard, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :603-618
[10]  
Gorenstein D., 1998, The Classification of the Finite Simple Groups. Number3