Unique continuation results for Ricci curvature and applications

被引:27
作者
Anderson, Michael T. [1 ]
Herzlich, Marc [2 ,3 ]
机构
[1] SUNY Stony Brook, Dept Mat, Stony Brook, NY 11794 USA
[2] CNRS, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
[3] Univ Montpellier 2, F-34095 Montpellier 5, France
基金
美国国家科学基金会;
关键词
Einstein metrics; unique continuation;
D O I
10.1016/j.geomphys.2007.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact manifolds with boundary, and in the setting of complete conformally compact metrics on such manifolds. Related to this issue, an isometry extension property is proved: continuous groups of isometrics at conformal infinity extend into the bulk of any complete conformally compact Einstein metric. Relations of this property with the invariance of the Gauss-Codazzi constraint equations under deformations are also discussed. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:179 / 207
页数:29
相关论文
共 25 条
[1]   Classical boundary-value problem in Riemannian quantum gravity and Taub-Bolt-anti-de Sitter geometries [J].
Akbar, MM .
NUCLEAR PHYSICS B, 2003, 663 (1-2) :215-230
[2]   Classical boundary-value problem in Riemannian quantum gravity and self-dual Taub-NUT-(anti)de Sitter geometries [J].
Akbar, MM ;
D'Eath, PD .
NUCLEAR PHYSICS B, 2003, 648 (1-2) :397-416
[3]   Boundary regularity for the Ricci equation, geometric convergence, and Gel-fand's inverse boundary problem [J].
Anderson, M ;
Katsuda, A ;
Kurylev, Y ;
Lassas, M ;
Taylor, M .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :261-321
[4]  
Anderson MT, 2005, IRMA LECT MATH THEOR, V8, P165
[5]   Boundary regularity, uniqueness and nonuniqueness for AH Einstein metrics on 4-manifolds [J].
Anderson, MT .
ADVANCES IN MATHEMATICS, 2003, 179 (02) :205-249
[6]   Scalar curvature rigidity for asymptotically locally hyperbolic manifolds [J].
Andersson, L ;
Dahl, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (01) :1-27
[7]   Elliptic-hyperbolic systems and the Einstein equations [J].
Andersson, L ;
Moncrief, V .
ANNALES HENRI POINCARE, 2003, 4 (01) :1-34
[8]  
Besse A.L., 1987, ERGEB MATH GRENZGEB, V10
[9]   UNIQUENESS IN THE CAUCHY PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS [J].
CALDERON, AP .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (01) :16-36
[10]  
Chrusciel PT, 2005, J DIFFER GEOM, V69, P111