Volume dependent extension of Kerr-Newman black hole thermodynamics

被引:6
作者
Biro, Tamas S. [1 ]
Czinner, Viktor G. [1 ]
Iguchi, Hideo [2 ]
Van, Peter [1 ,3 ]
机构
[1] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] Nihon Univ, Coll Sci & Technol, Lab Phys, 274-8501 Narashinodai, Funabashi, Chiba, Japan
[3] BME Fac Mech Engn, Dept Energy Engn, Bertalan Lajos U 4-6, H-1111 Budapest, Hungary
关键词
Black holes; Volume; Entropy; Thermodynamics; Heat capacity; Thermal stability; INTERIOR; ENTROPY;
D O I
10.1016/j.physletb.2020.135344
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the Hawking-Bekenstein entropy formula is modified by a factor of 8/3 if one also considers a work term in the 1st law of thermodynamics by a pressure stemming from the Hawking radiation. We give an intuitive definition for the corresponding thermodynamical volume by the implicit definition epsilon = Mc(2)/V, which is the average energy density of the Hawking radiation. This volume scales as V similar to M-5, agreeing with other suggestions. As a result the corresponding Smarr relation describes an extensive entropy and a stable effective equation of state S(E, V) similar to (EV1/4)-V-3/4. These results pertain for charged and rotating Kerr-Newman black holes. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
Ballik W., 2010, ARXIV 1005 1116
[2]   Vector volume and black holes [J].
Ballik, William ;
Lake, Kayll .
PHYSICAL REVIEW D, 2013, 88 (10)
[3]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[4]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[5]   Black holes: Their large interiors [J].
Bengtsson, Ingemar ;
Jakobsson, Emma .
MODERN PHYSICS LETTERS A, 2015, 30 (21)
[6]   Black hole horizons can hide positive heat capacity [J].
Biro, Tamas S. ;
Czinner, Viktor G. ;
Iguchi, Hideo ;
Van, Peter .
PHYSICS LETTERS B, 2018, 782 :228-231
[7]   A q-parameter bound for particle spectra based on black hole thermodynamics with Renyi entropy [J].
Biro, Tamas S. ;
Czinner, Viktor G. .
PHYSICS LETTERS B, 2013, 726 (4-5) :861-865
[8]   Volume inside old black holes [J].
Christodoulou, Marios ;
De Lorenzo, Tommaso .
PHYSICAL REVIEW D, 2016, 94 (10)
[9]   How big is a black hole? [J].
Christodoulou, Marios ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2015, 91 (06)
[10]   Black hole enthalpy and an entropy inequality for the thermodynamic volume [J].
Cvetic, M. ;
Gibbons, G. W. ;
Kubiznak, D. ;
Pope, C. N. .
PHYSICAL REVIEW D, 2011, 84 (02)