Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation

被引:9
|
作者
Hainzl, C
Lewin, M
Sparber, C
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
[2] Univ Munster, Dept Numer Math, D-48149 Munster, Germany
[3] Univ Vienna, CO Fac Math, Wolfgang Pauli Inst, A-1090 Vienna, Austria
关键词
QED; vacuum polarization; Dirac equation; Hartree-Fock model; semilinear evolution equations;
D O I
10.1007/s11005-005-4377-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalized DiracFock type evolution equation deduced from nophoton Quantum Electrodynamics, which describes the selfconsistent timeevolution of relativistic electrons, the observable ones as well as those filling up the Dirac sea. This equation has been originally introduced by Dirac in 1934 in a simplified form. Since we work in a Hartree-Fock type approximation, the elements describing the physical state of the electrons are infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced by ChaixIracane (J. Phys. B., 22, 37913814, 1989), and recently established by Hainzl-Lewin-Sere, we prove the existence of globalintime solutions of the considered evolution equation.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 50 条
  • [1] Existence of Global-In-Time Solutions to a Generalized Dirac-Fock Type Evolution Equation
    Christian Hainzl
    Mathieu Lewinand
    Christof Sparber
    Letters in Mathematical Physics, 2005, 72 : 99 - 113
  • [2] SYMMETRY OF DIRAC-FOCK EQUATION
    SHAPOVALOV, VN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1975, (06): : 57 - 63
  • [3] Existence of global-in-time weak solutions to a modified Gilbert equation
    Podio-Guidugli, P
    Valente, V
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (01) : 147 - 158
  • [4] Symmetry and Classification of the Dirac-Fock Equation
    Shapovalov, V. N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (02) : 1572 - 1591
  • [5] Existence of Minimizers for the Dirac-Fock Model of Crystals
    Catto, Isabelle
    Meng, Long
    Paturel, Eric
    Sere, Eric
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (04)
  • [6] Solutions of the multiconfiguration Dirac-Fock equations
    Levitt, Antoine
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [7] THE ZORA FORMALISM APPLIED TO THE DIRAC-FOCK EQUATION
    FAAS, S
    SNIJDERS, JG
    VANLENTHE, JH
    VANLENTHE, E
    BAERENDS, EJ
    CHEMICAL PHYSICS LETTERS, 1995, 246 (06) : 632 - 640
  • [8] Global-in-time semiclassical regularity for the Hartree-Fock equation
    Chong, J. J.
    Lafleche, L.
    Saffirio, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)
  • [9] Solutions of the Dirac-Fock equations for atoms and molecules
    Esteban, MJ
    Séré, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (03) : 499 - 530
  • [10] Solutions of the Dirac-Fock Equations without Projector
    Eric Paturel
    Annales Henri Poincaré, 2000, 1 : 1123 - 1157