A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method

被引:38
作者
Bhargava, R. R. [1 ]
Sharma, Kuldeep [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Crack; Electric-displacement intensity factor; Extended finite element method; Interaction integral; Piezoelectric ceramics; Stroh formalism; FRACTURE-MECHANICS; PERMEABLE CRACKS; GROWTH; PROPAGATION; COMPUTATION; INTEGRALS;
D O I
10.1016/j.commatsci.2011.01.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The extended finite element method is applied on the two-dimensional (2-D) finite piezoelectric media weakened by a crack. The fourfold standard enrichment functions are taken in conjugation with the interaction integral to evaluate the intensity factors. Four sequence of analysis, namely crack-mesh alignment, aspect ratio, mesh with local refinement and domain independency is done on the center and edge crack problems. These four analyses when combined together give an optimum result to study the finite specimen. It is observed that for smaller values of strip width to crack length ratio the finiteness of the specimen size affects the intensity factors. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1834 / 1845
页数:12
相关论文
共 28 条
[1]   Finite element-computation of the electromechanical J-integral for 2-D and 3-D crack analysis [J].
Abendroth, M ;
Groh, U ;
Kuna, M ;
Ricoeur, A .
INTERNATIONAL JOURNAL OF FRACTURE, 2002, 114 (04) :359-378
[2]  
Allik H., 1970, International Journal for Numerical Methods in Engineering, V2, P151, DOI 10.1002/nme.1620020202
[3]   Application of the X-FEM to the fracture of piezoelectric materials [J].
Bechet, E. ;
Scherzer, M. ;
Kuna, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (11) :1535-1565
[4]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[5]  
2-S
[6]   A review of extended/generalized finite element methods for material modeling [J].
Belytschko, Ted ;
Gracie, Robert ;
Ventura, Giulio .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (04)
[7]  
CHEREPANOV GP, 1977, PMM-J APPL MATH MEC+, V41, P397
[8]   Finite element techniques for dynamic crack analysis in piezoelectrics [J].
Enderlein, M ;
Ricoeur, A ;
Kuna, M .
INTERNATIONAL JOURNAL OF FRACTURE, 2005, 134 (3-4) :191-208
[9]  
Ewalds H.L., 1984, FRACTURE MECH
[10]   Crack propagation in piezoelectric materials under combined mechanical and electrical loadings [J].
Kumar, S ;
Singh, RN .
ACTA MATERIALIA, 1996, 44 (01) :173-200