Flexible Metal-Air Batteries: Progress, Challenges, and Perspectives

被引:183
作者
Liu, Qingchao [1 ,2 ]
Chang, Zhiwen [2 ]
Li, Zhongjun [1 ]
Zhang, Xinbo [2 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
基金
中国博士后科学基金;
关键词
batteries; challenges; flexible; perspectives; progress; LITHIUM-OXYGEN BATTERY; LI-O-2; BATTERY; POLYMER ELECTROLYTES; ENERGY-STORAGE; ELECTRICAL-CONDUCTIVITY; ELECTROCHEMICAL PERFORMANCE; MICRO-SUPERCAPACITORS; CARBON NANOTUBES; LI-CO2; BATTERIES; RU NANOPARTICLES;
D O I
10.1002/smtd.201700231
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible metal-air batteries, which are a promising candidate for implantation in wearable or rolling-up electronic devices, have attracted much attention recently due to their relatively high energy density. Various flexible metal-air batteries have been developed recently, including flexible nonaqueous lithium-air batteries, aqueous zinc-air batteries, and aqueous aluminum-air batteries. Although various viable configurations of flexible metal-air batteries have been proposed, challenges regarding electrode design, electrolyte exploitation, and low practical energy density, still exist. Here, a brief introduction is presented as to the recent development of flexible metal-air batteries, regarding the electrodes, electrolyte, and prototype devices. Also, a general perspective on the current challenges and recommended future research directions for the practical use of metal-air batteries is provided.
引用
收藏
页数:16
相关论文
共 146 条
[101]   Recent progress in solid oxide and lithium ion conducting electrolytes research [J].
Thangadurai, V. ;
Weppner, W. .
IONICS, 2006, 12 (01) :81-92
[102]   Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes [J].
Thangadurai, V ;
Weppner, W .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :339-344
[103]  
Thotiyl MMO, 2013, NAT MATER, V12, P1049, DOI [10.1038/nmat3737, 10.1038/NMAT3737]
[104]   The Carbon Electrode in Nonaqueous Li-O2 Cells [J].
Thotiyl, Muhammed M. Ottakam ;
Freunberger, Stefan A. ;
Peng, Zhangquan ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) :494-500
[105]   Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate [J].
Tominaka, Satoshi ;
Nishizeko, Hiroshi ;
Mizuno, Jun ;
Osaka, Tetsuya .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (10) :1074-1077
[106]   Exceptionally high Young's modulus observed for individual carbon nanotubes [J].
Treacy, MMJ ;
Ebbesen, TW ;
Gibson, JM .
NATURE, 1996, 381 (6584) :678-680
[107]  
VansNoorden R., 2014, NATURE, V26, P507
[108]  
vansWullen L., 2007, PHYS CHEM CHEM PHYS, V9, P3298
[109]   Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO) [J].
Vassal, N ;
Salmon, E ;
Fauvarque, JF .
ELECTROCHIMICA ACTA, 2000, 45 (8-9) :1527-1532
[110]   Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes [J].
Viet Thong Le ;
Kim, Heetae ;
Ghosh, Arunabha ;
Kim, Jaesu ;
Chang, Jian ;
Quoc An Vu ;
Duy Tho Pham ;
Lee, Ju-Hyuck ;
Kim, Sang-Woo ;
Lee, Young Hee .
ACS NANO, 2013, 7 (07) :5940-5947