A GGA+U study of lithium diffusion in vanadium doped LiFePO4

被引:85
作者
Lin, Hao [1 ,2 ]
Wen, Yanwei [1 ,2 ]
Zhang, Chenxi [1 ,2 ]
Zhang, Lulu [1 ,2 ]
Huang, Yunhui [1 ,2 ]
Shan, Bin [1 ,2 ,3 ]
Chen, Rong [4 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[4] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Mech Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
LiFePO4; Vanadium doping; Band structure; Ion diffusion; ELECTROCHEMICAL PROPERTIES; PHOSPHO-OLIVINES; ION; CATHODE; CONDUCTIVITY; PERFORMANCE; FE;
D O I
10.1016/j.ssc.2012.03.027
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Recent experiments showed beneficial influence of vanadium doping on the electrochemical performance of lithium iron phosphate (LiFePO4) cathode materials. First-principles calculations have been performed to investigate the stability, electronic structure and lithium diffusivity of vanadium-doped LiFePO4 and to elucidate the origin of such improvement. It is found that vanadium prefers occupying Fe sites and leads to additional density of states within the intrinsic bandgap. By the nudged elastic band method, we show that the barrier of Li ions diffusion along the one dimensional channel in both LiFePO4 and FePO4 phases can be effectively reduced by vanadium doping. Structural analysis shows the lower diffusion barrier ties closely to a volumetric expansion of the diffusion channel. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:999 / 1003
页数:5
相关论文
共 34 条
  • [1] BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I
    ANISIMOV, VI
    ZAANEN, J
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1991, 44 (03): : 943 - 954
  • [2] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [3] Small polaron hopping in LixFePO4 solid solutions:: Coupled lithium-ion and electron mobility
    Ellis, Brian
    Perry, Laura K.
    Ryan, Dominic H.
    Nazar, L. F.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (35) : 11416 - 11422
  • [4] LiFePO4 synthesis routes for enhanced electrochemical performance
    Franger, S
    Le Cras, F
    Bourbon, C
    Rouault, H
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) : A231 - A233
  • [5] Is small particle size more important than carbon coating?: An example study on LiFePO4 cathodes
    Gaberscek, Miran
    Dominko, Robert
    Jamnik, Janez
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) : 2778 - 2783
  • [6] Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
    Gibot, Pierre
    Casas-Cabanas, Montse
    Laffont, Lydia
    Levasseur, Stephane
    Carlach, Philippe
    Hamelet, Stephane
    Tarascon, Jean-Marie
    Masquelier, Christian
    [J]. NATURE MATERIALS, 2008, 7 (09) : 741 - 747
  • [7] Henkelman G, 2000, PROG T CHEM, V5, P269
  • [8] Vanadium Modified LiFePO4 Cathode for Li-Ion Batteries
    Hong, Jian
    Wang, C. S.
    Chen, X.
    Upreti, S.
    Whittingham, M. Stanley
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (02) : A33 - A38
  • [9] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50
  • [10] Effects of heteroatoms on doped LiFePO4/C composites
    Liu, H.
    Li, C.
    Cao, Q.
    Wu, Y. P.
    Holze, R.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) : 1017 - 1020