Robust high-fidelity universal set of quantum gates through non-adiabatic rapid passage

被引:3
|
作者
Li, Ran [2 ]
Gaitan, Frank [1 ]
机构
[1] Lab Phys Sci, College Pk, MD 20740 USA
[2] Kent State Univ, Dept Phys, N Canton, OH 44720 USA
基金
美国国家科学基金会;
关键词
fault-tolerant quantum computing; accuracy threshold; quantum interference; group-symmetrized evolution; robust high-fidelity quantum control; non-adiabatic dynamics; CONTROLLING QUBIT TRANSITIONS; INTERFERENCE; COMPUTATION;
D O I
10.1080/09500340.2011.592621
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show how a robust high-fidelity universal set of quantum gates can be implemented using a single form of non-adiabatic rapid passage whose parameters are optimized to maximize gate fidelity and reward gate robustness. Each gate in the universal set is found to operate with a fidelity F in the range 0.99988 < F < 0.99999, and to require control parameters with no more than 14 bit (1 part in 10(4)) precision. Such precision is within reach of commercially available arbitrary waveform generators, so that an experimental study of this approach to high-fidelity universal quantum control appears feasible.
引用
收藏
页码:1922 / 1927
页数:6
相关论文
共 50 条
  • [41] Robust operation of a universal set of logic gates for quantum computation using adiabatic population transfer between molecular levels
    Menzel-Jones, Cian
    Shapiro, Moshe
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [42] High-Fidelity Universal Gate Set for 9Be+ Ion Qubits
    Gaebler, J. P.
    Tan, T. R.
    Lin, Y.
    Wan, Y.
    Bowler, R.
    Keith, A. C.
    Glancy, S.
    Coakley, K.
    Knill, E.
    Leibfried, D.
    Wineland, D. J.
    PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [43] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
    王治旻
    马壮
    喻祥敏
    郑文
    周坤
    张宇佳
    张钰
    兰栋
    赵杰
    谭新生
    李邵雄
    于扬
    Chinese Physics B, 2023, 32 (10) : 244 - 248
  • [44] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
    Wang, Zhimin
    Ma, Zhuang
    Yu, Xiangmin
    Zheng, Wen
    Zhou, Kun
    Zhang, Yujia
    Zhang, Yu
    Lan, Dong
    Zhao, Jie
    Tan, Xinsheng
    Li, Shaoxiong
    Yu, Yang
    CHINESE PHYSICS B, 2023, 32 (10)
  • [45] Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy
    Kittell, Aaron W.
    Hyde, James S.
    JOURNAL OF MAGNETIC RESONANCE, 2015, 255 : 68 - 76
  • [46] High-fidelity parallel entangling gates on a neutral-atom quantum computer
    Evered, Simon J.
    Bluvstein, Dolev
    Kalinowski, Marcin
    Ebadi, Sepehr
    Manovitz, Tom
    Zhou, Hengyun
    Li, Sophie H.
    Geim, Alexandra A.
    Wang, Tout T.
    Maskara, Nishad
    Levine, Harry
    Semeghini, Giulia
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    NATURE, 2023, 622 (7982) : 268 - 272
  • [47] High-fidelity parallel entangling gates on a neutral-atom quantum computer
    Simon J. Evered
    Dolev Bluvstein
    Marcin Kalinowski
    Sepehr Ebadi
    Tom Manovitz
    Hengyun Zhou
    Sophie H. Li
    Alexandra A. Geim
    Tout T. Wang
    Nishad Maskara
    Harry Levine
    Giulia Semeghini
    Markus Greiner
    Vladan Vuletić
    Mikhail D. Lukin
    Nature, 2023, 622 : 268 - 272
  • [48] High-fidelity stimulated Raman adiabatic passage analog in optimum three-waveguide system
    Ma, Rui-Qiong
    Chai, Bao-Yu
    Liang, Meng
    Duan, Zuo-Liang
    Zhang, Wen-Wen
    Dong, Jun
    Shi, Jian
    OPTICS COMMUNICATIONS, 2019, 430 : 1 - 8
  • [49] Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field
    Wu, Jin-Lei
    Su, Shi-Lei
    Wang, Yan
    Song, Jie
    Xia, Yan
    Jiang, Yong-Yuan
    OPTICS LETTERS, 2020, 45 (05) : 1200 - 1203
  • [50] Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning
    Daraeizadeh, Sahar
    Premaratne, Shavindra P.
    Matsuura, A. Y.
    IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 30 - 36