Development of PET molecular targeting agents with gallium-68

被引:1
作者
Cutler, C. S. [1 ]
Sisay, N. [2 ]
Cantorias, M. [1 ]
Galazzi, F. [3 ]
Quinn, T. P. [3 ]
Smith, C. J. [4 ,5 ,6 ]
机构
[1] Univ Missouri Res Reactor Ctr MURR, Radiopharmaceut Sci Inst, Nucl Engn & Sci Inst, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Chem, Columbia, MO 65211 USA
[3] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[4] Univ Missouri Sch Med, Dept Radiol, Columbia, MO 65203 USA
[5] Univ Missouri Sch Med, Res Reactor Ctr, Columbia, MO 65203 USA
[6] Harry S Truman Mem Vet Hosp, Columbia, MO 65203 USA
关键词
Gallium-68; Polyaminocarboxylate ligands; NOTA; DOTA; IN-VITRO; TRACER; COMPLEXES; LIGAND;
D O I
10.1524/ract.2011.1887
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The utilization of positron emission tomography (PET) is increasing due to its superior imaging quality and its ability to be used for in vivo quantification. Radionuclides that decay by positron emission can be attached to the same chelators used for radiotherapy applications in diagnosis and staging. One such isotope is Ga-68 (T-1/2 = 68 min), which can be obtained from a long-lived generator by decay of the parent Ge-68 (T-1/2 = 270.8 d). The availability of Ga-68 from a generator plus its ability to be stably incorporated with a variety of chelates hold promise for expanding PET utilization to facilities unable to afford their own cyclotron. In collaboration with researchers at the University of Missouri, we have developed and evaluated peptides that target the melanocortin-1 receptor and the gastrin-releasing peptide (GRP) receptor for peptide guided imaging and therapy. The melanocortin-1 receptor is an attractive target for peptide guided melanoma imaging and therapy. The limited number of receptors per cell, approximately 900-5000, requires high specific activity radiolabeled peptide ligands to prevent target saturation and ensure optimal cellular uptake. GRP receptors are over-expressed by a variety of human cancers such as breast, lung, pancreatic and prostate tumors, and due to bombesin's toxicity, it is necessary to label it in high specific activity. Results are presented on NOTA and DOTA bifunctionalized alpha-MSH and bombesin peptides, highlighting the differences in specific activity, preparation time and in vivo characteristics.
引用
收藏
页码:641 / 651
页数:11
相关论文
共 50 条
[11]   Approaching Gallium-68 radiopharmaceuticals for tumor diagnosis: a Medicinal Chemist's perspective [J].
Musumeci, Francesca ;
Fasce, Alessandro ;
Falesiedi, Marta ;
Oleari, Federica ;
Grossi, Giancarlo ;
Carbone, Anna ;
Schenone, Silvia .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2025, 294
[12]   Thwarting Isomerization through Rigidity: A Promising HBED Derivative for the Chelation of Gallium-68 [J].
Tosato, Marianna ;
Boniburini, Matteo ;
Faglioni, Francesco ;
Genua, Francesco ;
Mari, Matteo ;
Storchi, Jennifer ;
Franchi, Sara ;
Asti, Mattia ;
Ferrari, Erika .
INORGANIC CHEMISTRY, 2025,
[13]   Amino acid based gallium-68 chelators capable of radiolabeling at neutral pH [J].
Price, Thomas W. ;
Gallo, Juan ;
Kubicek, Vojtech ;
Bohmova, Zuzana ;
Prior, Timothy J. ;
Greenman, John ;
Hermann, Petr ;
Stasiuk, Graeme J. .
DALTON TRANSACTIONS, 2017, 46 (48) :16973-16982
[14]   Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography [J].
Moussaron, Albert ;
Jouan-Hureaux, Valerie ;
Collet, Charlotte ;
Pierson, Julien ;
Thomas, Noemie ;
Choulier, Laurence ;
Veran, Nicolas ;
Doyen, Matthieu ;
Arnoux, Philippe ;
Maskali, Fatiha ;
Dumas, Dominique ;
Acherar, Samir ;
Barberi-Heyob, Muriel ;
Frochot, Celine .
MOLECULES, 2021, 26 (23)
[15]   Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands [J].
Berry, David J. ;
Ma, Yongmin ;
Ballinger, James R. ;
Tavare, Richard ;
Koers, Alexander ;
Sunassee, Kavitha ;
Zhou, Tao ;
Nawaz, Saima ;
Mullen, Gregory E. D. ;
Hider, Robert C. ;
Blower, Philip J. .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7068-7070
[16]   Benefits of NOPO As Chelator in Gallium-68 Peptides, Exemplified by Preclinical Characterization of 68Ga-NOPO-c(RGDfK) [J].
Simecek, Jakub ;
Notni, Johannes ;
Kapp, Tobias G. ;
Kessler, Horst ;
Wester, Hans-Juergen .
MOLECULAR PHARMACEUTICS, 2014, 11 (05) :1687-1695
[17]   Multivalent Bifunctional Chelator Scaffolds for Gallium-68 Based Positron Emission Tomography Imaging Probe Design: Signal Amplification via Multivalency [J].
Singh, Ajay N. ;
Liu, Wei ;
Hao, Guiyang ;
Kumar, Amit ;
Gupta, Anjali ;
Oez, Orhan K. ;
Hsieh, Jer-Tsong ;
Sun, Xiankai .
BIOCONJUGATE CHEMISTRY, 2011, 22 (08) :1650-1662
[18]   Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions [J].
Burke, Benjamin P. ;
Baghdadi, Neazar ;
Kownacka, Alicja E. ;
Nigam, Shubhanchi ;
Clemente, Goncalo S. ;
Al-Yassiry, Mustafa M. ;
Domarkas, Juozas ;
Lorch, Mark ;
Pickles, Martin ;
Gibbs, Peter ;
Tripier, Raphael ;
Cawthorne, Christopher ;
Archibald, Stephen J. .
NANOSCALE, 2015, 7 (36) :14889-14896
[19]   Efficient gallium-68 radiolabeling reaction of DOTA derivatives using a resonant-type microwave reactor [J].
Yagi, Yusuke ;
Shimizu, Yoichi ;
Arimitsu, Kenji ;
Nakamoto, Yuji ;
Higuchi, Takahiro ;
Togashi, Kaori ;
Kimura, Hiroyuki .
JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2019, 62 (03) :132-138
[20]   DO2A-based ligands for gallium-68 chelation: synthesis, radiochemistry and ex vivo cardiac uptake [J].
Smith, Adam J. ;
Osborne, Bradley E. ;
Keeling, George P. ;
Blower, Philip J. ;
Southworth, Richard ;
Long, Nicholas J. .
DALTON TRANSACTIONS, 2020, 49 (04) :1097-1106