Weyl law for open systems with sharply divided mixed phase space

被引:7
作者
Ishii, Akihiro [1 ]
Akaishi, Akira [1 ]
Shudo, Akira [1 ,2 ]
Schomerus, Henning [3 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 04期
关键词
RESONANCES;
D O I
10.1103/PhysRevE.85.046203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A generalization of the Weyl law to systems with a sharply divided mixed phase space is proposed. The ansatz is composed of the usual Weyl term which counts the number of states in regular islands and a term associated with sticky regions in phase space. For a piecewise linear map, we numerically check the validity of our hypothesis, and find good agreement not only for the case with a sharply divided phase space but also for the case where tiny island chains surround the main regular island. For the latter case, a nontrivial power law exponent appears in the survival probability of classical escaping orbits, which may provide a clue to develop the Weyl law for more generic mixed systems.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map [J].
Akaishi, A. ;
Shudo, A. .
PHYSICAL REVIEW E, 2009, 80 (06)
[2]  
Akaishi A., UNPUB
[3]   Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space [J].
Altmann, EG ;
Motter, AE ;
Kantz, H .
PHYSICAL REVIEW E, 2006, 73 (02)
[4]   Partial Weyl law for billiards [J].
Baecker, A. ;
Ketzmerick, R. ;
Loeck, S. ;
Schanz, H. .
EPL, 2011, 94 (03)
[5]  
Baltes H.P., 1978, Spectra of Finite Systems
[6]   Kinematics, equilibrium, and shape in Hamiltonian systems: The "LAB" effect [J].
Bunimovich, L .
CHAOS, 2003, 13 (03) :903-912
[7]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[8]   Fractal Weyl law for three-dimensional chaotic hard-sphere scattering systems [J].
Eberspaecher, Alexander ;
Main, Joerg ;
Wunner, Guenter .
PHYSICAL REVIEW E, 2010, 82 (04)
[9]   LONG-TIME CORRELATIONS IN THE STOCHASTIC REGIME [J].
KARNEY, CFF .
PHYSICA D, 1983, 8 (03) :360-380
[10]   Fractal Weyl laws for quantum decay in dynamical systems with a mixed phase space [J].
Kopp, Marten ;
Schomerus, Henning .
PHYSICAL REVIEW E, 2010, 81 (02)