About non-differentiable functions

被引:93
作者
Ben Adda, F
Cresson, J
机构
[1] Univ Paris 06, Lab Anal Numer, F-75013 Paris, France
[2] Besancon Univ Franche Comte, Equipe Math, F-25030 Besancon, France
关键词
fractional calculus; Riemann-Liouville fractional operators; irregular functions;
D O I
10.1006/jmaa.2001.7656
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the notion of local fractional derivative introduced by Kolvankar and Gangal. It allows a fine study of the local structure of irregular (fractal) functions. Using this tool, we extend classical theorems of analysis (extrema, Rolle) to non-differentiable functions. In particular, we prove a generalized Taylor expansion theorem. We introduce a new derivative of real order and discuss its properties. (C) 2001 Academic Press.
引用
收藏
页码:721 / 737
页数:17
相关论文
共 16 条
[1]  
ADAMS R, 1975, SOBOLEV SPACE
[2]  
ADDA FB, CALCUL FRACTIONNAIRE
[3]  
ADDA FB, 2000, C R ACAD SCI PARIS 1, V330, P261
[4]  
Ben Adda F., 1997, J FRACT CALC, V11, P21
[5]  
Brezis H., 1983, Analyse Fonctionnelle-Theorie et Applications
[6]  
Cherbit G., 1967, FRACTALS DIMENSION E, P340
[7]  
Ciesielski Z., 1960, Bulletin de l'Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques, V8, P217
[8]  
GINZBURG A, 1995, RUSSIAN ACAD SCI DOK, V50, P441
[9]  
Kilbas AA, 1993, Fractional Integral and Derivatives: Theory and Applications
[10]   Holder exponents of irregular signals and local fractional derivatives [J].
Kolwankar, KM ;
Gangal, AD .
PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01) :49-68