A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria

被引:54
作者
Babuska, I. [1 ]
Nobile, F. [2 ]
Tempone, R. [3 ,4 ,5 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78712 USA
[2] Politecn Milan, Dipartimento Matemat F Brioschi, MOX, I-20133 Milan, Italy
[3] Florida State Univ, SCS, Tallahassee, FL 32306 USA
[4] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[5] KTH, Dept Numer Anal, S-10044 Stockholm, Sweden
关键词
model validation; uncertainty quantification; Bayesian updates; failure probability;
D O I
10.1016/j.cma.2007.08.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work describes a solution to the validation challenge problem posed at the SANDIA Validation Challenge Workshop, May 21-23, 2006, NM. It presents and applies a general methodology to it. The solution entails several standard steps, namely selecting and fitting several models to the available prior information and then sequentially rejecting those which do not perform satisfactorily in the validation and accreditation experiments. The rejection procedures are based on Bayesian updates, where the prior density is related to the current candidate model and the posterior density is obtained by conditioning on the validation and accreditation experiments. The result of the analysis is the computation of the failure probability as well as a quantification of the confidence in the computation, depending on the amount of available experimental data. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2517 / 2539
页数:23
相关论文
共 16 条