The transmission problem for thermoelastic beams

被引:23
作者
Rivera, JEM [1 ]
Oquendo, HP [1 ]
机构
[1] Natl Lab Sci Computat, Dept Appl Math, BR-25651070 Petropolis, RJ, Brazil
关键词
D O I
10.1080/014957301753251665
中图分类号
O414.1 [热力学];
学科分类号
摘要
We study the transmission problem for a partially thermoelastic beam, that is, a beam that is composed of two components. One of them is thermoelastic and the other is not sensitive to the difference of temperature; the thermoelastic part of the beam is small. Our objective is to show that thermoelastic dissipation over part of the material, no matter how small this part, is sufficient to stabilize, in time, the whole beam.
引用
收藏
页码:1137 / 1158
页数:22
相关论文
共 14 条
[1]  
Bisognin E, 1998, MATH METHOD APPL SCI, V21, P393, DOI 10.1002/(SICI)1099-1476(19980325)21:5<393::AID-MMA958>3.0.CO
[2]  
2-J
[3]   Asymptotic stability and global existence in thermoelasticity with symmetry [J].
Jiang, S ;
Rivera, JEM ;
Racke, R .
QUARTERLY OF APPLIED MATHEMATICS, 1998, 56 (02) :259-275
[4]  
KIM JU, 1992, SIAM J MATH ANAL, V23, P889
[5]   UNIFORM STABILIZATION OF A NONLINEAR BEAM BY NONLINEAR BOUNDARY FEEDBACK [J].
LAGNESE, JE ;
LEUGERING, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :355-388
[6]  
Lions J. L., 1969, QUELQUES METHODES RE
[7]   Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping [J].
Liu, KS ;
Liu, ZG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (03) :1086-1098
[8]   A NOTE ON THE EQUATIONS OF A THERMOELASTIC PLATE [J].
LIU, ZY ;
RENARDY, M .
APPLIED MATHEMATICS LETTERS, 1995, 8 (03) :1-6
[9]   Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping [J].
Liu, ZY ;
Zheng, SM .
QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (03) :551-564
[10]  
Munoz Rivera J. E., 1992, FUNKC EKVACIOJ-SER I, V35, P19