Biomaterials and Microfluidics for Drug Discovery and Development

被引:11
作者
Carvalho, Mariana R. [1 ,2 ,3 ]
Truckenmuller, Roman [4 ]
Reis, Rui Luis [1 ,2 ,3 ]
Oliveira, Joaquim Miguel [1 ,2 ,3 ]
机构
[1] Univ Minho, European Inst Excellence Tissue Engn & Regenerat, I3Bs Res Inst Biomat Biodegradables & Biomimet, 3Bs Res Grp, Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, Braga, Guimaraes, Portugal
[3] Univ Minho, Discoveries Ctr Regenerat & Precis Med, Guimaraes, Portugal
[4] Maastricht Univ, MERLN Inst Technol Inspired Regenerat Med, Dept Complex Tissue Regenerat, Maastricht, Netherlands
来源
BIOMATERIALS AND MICROFLUIDICS-BASED TISSUE ENGINEERED 3D MODELS | 2020年 / 1230卷
关键词
3D models; Biomaterials; Drug discovery; Microfluidics; Organ-on-a-chip; Cancer; ON-A-CHIP; EXTRACELLULAR-MATRIX; CULTURE MODELS; PRODUCTIVITY; HYDROGEL; REPAIR;
D O I
10.1007/978-3-030-36588-2_8
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Microfluidic devices are now one of the most promising tools to mimic in vivo like conditions, either in normal or disease scenarios, such as tumorigenesis or pathogenesis. Together with the potential of biomaterials, its combination with microfluidics represents the ability to more closely mimic cells' natural microenvironment concerning its three-dimensional (3D) nature and continuous perfusion with nutrients and cells' crosstalk. Due to miniaturization and increased experimental throughput, microfluidics have generated significant interest in the drug discovery and development domain. Herein, the most recent advances in the field of microfluidics for drug discovery are overviewed, and the role of biomaterials in 3D in vitro models and the contribution of organ-on-a-chip technologies highlighted.
引用
收藏
页码:121 / 135
页数:15
相关论文
共 68 条
[1]   Microfluidic heart on a chip for higher throughput pharmacological studies [J].
Agarwal, Ashutosh ;
Goss, Josue Adrian ;
Cho, Alexander ;
McCain, Megan Laura ;
Parker, Kevin Kit .
LAB ON A CHIP, 2013, 13 (18) :3599-3608
[2]   Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis [J].
Anguiano, Maria ;
Castilla, Carlos ;
Maska, Martin ;
Ederra, Cristina ;
Pelaez, Rafael ;
Morales, Xabier ;
Munoz-Arrieta, Gorka ;
Mujika, Maite ;
Kozubek, Michal ;
Munoz-Barrutia, Arrate ;
Rouzaut, Ana ;
Arana, Sergio ;
Manuel Garcia-Aznar, Jose ;
Ortiz-de-Solorzano, Carlos .
PLOS ONE, 2017, 12 (02)
[3]   Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients [J].
Baker, Brendon M. ;
Trappmann, Britta ;
Stapleton, Sarah C. ;
Toro, Esteban ;
Chen, Christopher S. .
LAB ON A CHIP, 2013, 13 (16) :3246-3252
[4]   Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology [J].
Barata, David ;
Spennati, Giulia ;
Correia, Cristina ;
Ribeiro, Nelson ;
Harink, Bjorn ;
van Blitterswijk, Clemens ;
Habibovic, Pamela ;
van Rijt, Sabine .
BIOMEDICAL MICRODEVICES, 2017, 19 (04)
[5]   High-throughput screening approaches and combinatorial development of biomaterials using microfluidics [J].
Barata, David ;
van Blitterswijk, Clemens ;
Habibovic, Pamela .
ACTA BIOMATERIALIA, 2016, 34 :1-20
[6]   Biomaterials-based microfluidics for engineered tissue constructs [J].
Bettinger, Christopher J. ;
Borenstein, Jeffrey T. .
SOFT MATTER, 2010, 6 (20) :4999-5015
[7]   Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel [J].
Bichara, David A. ;
Bodugoz-Sentruk, Hatice ;
Ling, Doris ;
Malchau, Erik ;
Bragdon, Charles R. ;
Muratoglu, Orhun K. .
BIOMEDICAL MATERIALS, 2014, 9 (04)
[8]   A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells [J].
Bischel, Lauren L. ;
Casavant, Benjamin P. ;
Young, Pamela A. ;
Eliceiri, Kevin W. ;
Basu, Hirak S. ;
Beebe, David J. .
INTEGRATIVE BIOLOGY, 2014, 6 (06) :627-635
[9]   Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response [J].
Buchanan, Cara ;
Rylander, Marissa Nichole .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (08) :2063-2072
[10]   Recreating the Perivascular Niche Ex Vivo Using a Microfluidic Approach [J].
Carrion, Bita ;
Huang, Carlos P. ;
Ghajar, Cyrus M. ;
Kachgal, Suraj ;
Kniazeva, Ekaterina ;
Jeon, Noo Li ;
Putnam, Andrew J. .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 107 (06) :1020-1028