Deep neural networks with Elastic Rectified Linear Units for object recognition

被引:86
作者
Jiang, Xiaoheng [1 ]
Pang, Yanwei [1 ]
Li, Xuelong [2 ]
Pan, Jing [1 ,3 ]
Xie, Yinghong [1 ,4 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Elect Engn, Tianjin 300222, Peoples R China
[4] Shenyang Univ, Coll Informat Engn, Shenyang 110044, Liaoning, Peoples R China
关键词
Deep neural networks; Elastic Rectified Linear Unit (EReLU); Elastic Parametric Rectified Linear Unit (EPReLU); Non-saturating nonlinear activation function;
D O I
10.1016/j.neucom.2017.09.056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rectified Linear Unit (ReLU) is crucial to the recent success of deep neural networks (DNNs). In this paper, we propose a novel Elastic Rectified Linear Unit (EReLU) that focuses on processing the positive part of input. Unlike previous variants of ReLU that typically adopt linear or piecewise linear functions to represent the positive part, EReLU is characterized by that each positive value scales within a moderate range like a spring during training stage. On test time, EReLU becomes standard ReLU. EReLU improves model fitting with no extra parameters and little overfitting risk. Furthermore, we propose Elastic Parametric Rectified Linear Unit (EPReLU) by taking advantage of EReLU and parametric ReLU (PReLU). EPReLU is able to further improve the performance of networks. In addition, we present a new training strategy to train DNNs with EPReLU. Experiments on four benchmarks including CIFAR10, CIFAR10, SVHN and ImageNet 2012 demonstrate the effectiveness of both EReLU and EPReLU. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1132 / 1139
页数:8
相关论文
共 47 条
[1]  
Agostinelli F., 2014, arXiv preprint arXiv:1412.6830
[2]  
[Anonymous], 2015, Advances in Neural Information Processing Systems
[3]  
[Anonymous], 2014, CORR
[4]  
[Anonymous], 2013, CORR
[5]  
[Anonymous], 2015, Neurocomputing Recent Developments on Deep Big Vision, DOI [DOI 10.1016/J.NEUCOM.2015.09.116, 10. 1016/j.neucom.2015.09.116, DOI 10.1016/J.NEUC0M.2015.09.116]
[6]  
[Anonymous], 2013, CoRR
[7]   Hierarchical Autoassociative Polynimial Network (HAP Net) for pattern recognition [J].
Aspiras, Theus H. ;
Asari, Vijayan K. .
NEUROCOMPUTING, 2017, 222 :1-10
[8]   Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry [J].
Cao, Jiale ;
Pang, Yanwei ;
Li, Xuelong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (12) :5538-5551
[9]   Fast learning in Deep Neural Networks [J].
Chandra, B. ;
Sharma, Rajesh K. .
NEUROCOMPUTING, 2016, 171 :1205-1215
[10]  
Girshick R., 2014, P IEEE C COMP VIS PA, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81, 10.1109/cvpr.2014.81]