An analysis of the weak Galerkin finite element method for convection-diffusion equations

被引:12
|
作者
Zhang, Tie [1 ]
Chen, Yanli [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak Galerkin method; Optimal error estimate; Superconvergence; Convection-diffusion equation;
D O I
10.1016/j.amc.2018.10.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the weak finite element method solving convection-diffusion equations. A new weak finite element scheme is presented based on a special variational form. The optimal order error estimates are derived in the discrete H-1-norm, the L-2-norm and the L-infinity-norm, respectively. In particular, the H-1-superconvergence of order k + 2 is obtained under certain condition if polynomial pair P-k(K) x Pk+1 (partial derivative K) is used in the weak finite element space. Finally, numerical examples are provided to illustrate our theoretical analysis. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:612 / 621
页数:10
相关论文
共 50 条