On the extended applications of Homogenous Balance Method

被引:153
作者
Senthilvelan, M [1 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Homogenous Balance Method; nonlinear partial differential equations; special solutions;
D O I
10.1016/S0096-3003(00)00076-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the travelling wave reductions for certain (2 + 1)- and (3 + 1)-dimensional physically important nonlinear evolutionary equations by using the recently proposed Homogenous Balance Method (HBM). Through this analysis we explore certain new solutions for the equations we have studied. (C) 2001 Published by Elsevier Science Inc.
引用
收藏
页码:381 / 388
页数:8
相关论文
共 16 条
[1]  
Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
[2]   On the transverse instabilities of solitary waves [J].
Allen, MA ;
Rowlands, G .
PHYSICS LETTERS A, 1997, 235 (02) :145-146
[3]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[4]   New exact solutions to a system of coupled KdV equations [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 245 (05) :389-392
[5]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[6]   SYMMETRY ANALYSIS OF THE INFELD-ROWLANDS EQUATION [J].
FAUCHER, M ;
WINTERNITZ, P .
PHYSICAL REVIEW E, 1993, 48 (04) :3066-3071
[7]   On a generalized breaking soliton equation [J].
Gao, YT ;
Tian, B .
CHAOS SOLITONS & FRACTALS, 1997, 8 (06) :897-899
[8]  
Konopelchenko B.G., 1993, Solitons in Multidimensions, DOI DOI 10.1142/1982
[9]   Localized coherent structures of (2+1) dimensional generalizations of soliton systems [J].
Lakshmanan, M ;
Radha, R .
PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01) :163-188
[10]   GROUP THEORETICAL-ANALYSIS OF DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
PAQUIN, G ;
WINTERNITZ, P .
PHYSICA D, 1990, 46 (01) :122-138