Numerical Approximations for the Fractional Fokker-Planck Equation with Two-Scale Diffusion

被引:2
作者
Sun, Jing [1 ]
Deng, Weihua [1 ]
Nie, Daxin [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Fokker-Planck equation; Two-scale diffusion; Finite element; L-1; scheme; Error estimates; NONSMOOTH DATA;
D O I
10.1007/s10915-022-01812-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional Fokker-Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing numerical discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive the fractional Fokker-Planck equation with two-scale diffusion from the Levy process framework, and then the fully discrete scheme is built by using the L-1 scheme for time discretization and finite element method for space. With the help of the sharp regularity estimate of the solution, we optimally get the spatial and temporal error estimates. Finally, we validate the effectiveness of the provided algorithm by extensive numerical experiments.
引用
收藏
页数:25
相关论文
共 21 条
  • [1] FINITE ELEMENT APPROXIMATIONS FOR FRACTIONAL EVOLUTION PROBLEMS
    Acosta, Gabriel
    Bersetche, Francisco M.
    Pablo Borthagaray, Juan
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (03) : 767 - 794
  • [2] A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS
    Acosta, Gabriel
    Pablo Borthagaray, Juan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 472 - 495
  • [3] Adams R., 2003, SOBOLEV SPACES
  • [4] Applebaum D., 2009, LEVY PROCESSES STOCH, V2, DOI [10.1017/CBO9780511809781, DOI 10.1017/CBO9780511809781]
  • [5] An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid
    Bazhlekova, Emilia
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (01) : 1 - 31
  • [6] Finite element approximation of an obstacle problem for a class of integro-differential operators
    Bonito, Andrea
    Lei, Wenyu
    Salgado, Abner J.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 229 - 253
  • [7] Numerical approximation of the integral fractional Laplacian
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    [J]. NUMERISCHE MATHEMATIK, 2019, 142 (02) : 235 - 278
  • [8] Numerical approximation of fractional powers of regularly accretive operators
    Bonito, Andrea
    Pasciak, Joseph E.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1245 - 1273
  • [9] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [10] ERROR-ESTIMATES WITH SMOOTH AND NONSMOOTH DATA FOR A FINITE-ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    LARSSON, S
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 603 - 630