Experimental Study on Bluff-Body Stabilized Premixed Flame with a Central Air/Fuel Jet

被引:8
|
作者
Tong, Yiheng [1 ]
Chen, Shuang [2 ]
Li, Mao [1 ]
Li, Zhongshan [3 ]
Klingmann, Jens [1 ]
机构
[1] Lund Univ, LTH, Dept Energy Sci, SE-22100 Lund, Sweden
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
[3] Lund Univ, LTH, Div Combust Phys, SE-22100 Lund, Sweden
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
bluff-body; premixed flame; flame structures; flame instabilities; lean blowout; SPATIAL MIXTURE GRADIENTS; BLOWOFF CHARACTERISTICS; MICRO-COMBUSTOR; VELOCITY OSCILLATIONS; HYDROGEN/AIR FLAME; SHAPE; DYNAMICS;
D O I
10.3390/en10122011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bluff-body flame holders are commonly employed in many industrial applications. A bluff-body is usually adopted to enhance the downstream mixing of the combustion products and the fresh fuel-air mixtures, thus to improve the flame stability and to control the combustion process. In the present paper, flames stabilized by a conical-shape bluff-body flame holder with a central air/fuel jet were studied. Effects of both a central air jet and a central fuel jet on the structures and lean blowout limits of the premixed annular flames, and on the temperature on the upper surface of the bluff-body were investigated and presented. It was revealed that a central jet led to a considerable reduction of the temperature on the upper surface of the bluff-body. It was proposed to be caused by the alternation of flow structures (in the case with a central air jet) altogether with the flame lifting from the burner (in the case with a central fuel jet). Thus, it might be used to solve the problem of the bluff-body with high heat loads in practical applications. The flame stability characteristics, for example the unstable flame dynamics and the lean blowout limits, varied with the injection of an air or fuel jet through the central pipe. Different blowout behaviors, being with or without the occurrence of flame split and flashing, caused by a central air jet were presented in the paper. In addition, when a small amount of central fuel jet (i.e., U-f/U-a = 0.045) was injected into the flow fields, an unsteady circular motion of the flame tip along the outer edge of the bluff-body was observed as well. Whereas, with an increase in the amount of the central fuel jet, the flame detached from the outer edge of the bluff-body and then became much more unstable. With a central air or fuel jet injecting into the flow field, premixed flames stabilized by the bluff-body became more unstable and easier to blowout.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effect of hydrogen enrichment on swirl/bluff-body lean premixed flame stabilization
    Guo, Shilong
    Wang, Jinhua
    Zhang, Weijie
    Zhang, Meng
    Huang, Zuohua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (18) : 10906 - 10919
  • [32] Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame
    Lee, Chin Yik
    Li, Larry Kin Bong
    Juniper, Matthew P.
    Cant, Robert Stewart
    COMBUSTION THEORY AND MODELLING, 2016, 20 (01) : 131 - 153
  • [33] Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients
    Chaudhuri, Swetaprovo
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2009, 156 (03) : 706 - 720
  • [34] Hollow bluff body-stabilized natural gas-air premixed flames
    Hamed, A. M.
    Kamal, M. M.
    Abd ElHameed, M.
    Aboelsoud, W.
    Hussin, A. E.
    FUEL, 2023, 334
  • [35] Experimental studies of bluff-body stabilized LPG diffusion flames
    Mishra, D. P.
    Kiran, D. Y.
    FUEL, 2009, 88 (03) : 573 - 578
  • [36] A comparative study of gaseous fuel flame characteristics for different bluff body geometries
    Ibrahim, I. A.
    Shokry, A. H.
    Shabaan, M. M.
    Gad, H. M.
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 34
  • [37] A numerical study on flame and large-scale flow structures in bluff-body stabilized flames
    Chen, Jing
    Zhou, Hua
    Ren, Zhuyin
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (07) : 1646 - 1656
  • [38] Numerical study of bluff-body non-premixed flame structures using laminar flamelet model
    Hossain, M
    Malalasekera, W
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2005, 219 (A5) : 361 - 370
  • [39] FLAME STABILITY IN SWIRLING AND BLUFF-BODY BURNERS: A REVIEW
    Mahmood, Abdulrahman Shakir
    Saleh, Fouad Alwan
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2023, 85 (06): : 1 - 15
  • [40] LOW-FREQUENCY OSCILLATION OF A NON-PREMIXED FLAME ON A BLUFF-BODY BURNER
    Pan, Kuo-Long
    Li, Chih-Chieh
    Juan, Wen-Chi
    Yang, Jing-Tang
    COMBUSTION SCIENCE AND TECHNOLOGY, 2009, 181 (10) : 1217 - 1230