A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings

被引:205
作者
Dosset, P [1 ]
Hus, JC [1 ]
Marion, D [1 ]
Blackledge, M [1 ]
机构
[1] CEA, CNRS, Inst Biol Struct Jean Pierre Ebel, F-38027 Grenoble, France
关键词
alignment tensor; liquid crystal; modular domains; partial alignment; residual dipolar coupling; rigid body modeling;
D O I
10.1023/A:1011206132740
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Residual dipolar couplings (RDC), measured by dissolving proteins in dilute liquid crystal media, or by studying naturally paramagnetic molecules, have rapidly become established as routine measurements in the investigation of the structure of macromolecules by NMR. One of the most obvious applications of the previously inaccessible long-range angular information afforded by RDC is the accurate definition of domain orientation in multi-module macromolecules or complexes. In this paper we describe a novel program developed to allow the determination of alignment tensor parameters for individual or multiple domains in macromolecules from residual dipolar couplings and to facilitate their manipulation to construct low-resolution models of macromolecular structure. For multi-domain systems the program determines the relative orientation of individual structured domains, and provides graphical user-driven rigid-body modeling of the different modules relative to the common tensorial frame. Translational freedom in the common frame, and equivalent rotations about the diagonalized (x,y,z) axes are used to position the different modules in the common frame to find a model in best agreement with experimentally measured couplings alone or in combination with additional experimental or covalent information.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 34 条
[1]   Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings [J].
Al-Hashimi, HM ;
Valafar, H ;
Terrell, M ;
Zartler, ER ;
Eidsness, MK ;
Prestegard, JH .
JOURNAL OF MAGNETIC RESONANCE, 2000, 143 (02) :402-406
[2]   Recognition of protein folds via dipolar couplings [J].
Annila, A ;
Aitio, H ;
Thulin, E ;
Drakenberg, T .
JOURNAL OF BIOMOLECULAR NMR, 1999, 14 (03) :223-230
[3]  
[Anonymous], FUZZY LOGIC EXPERT S
[4]   LONG-RANGE MOTIONAL RESTRICTIONS IN A MULTIDOMAIN ZINC-FINGER PROTEIN FROM ANISOTROPIC TUMBLING [J].
BRUSCHWEILER, R ;
LIAO, XB ;
WRIGHT, PE .
SCIENCE, 1995, 268 (5212) :886-889
[5]   Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration [J].
Cai, M ;
Huang, Y ;
Zheng, R ;
Wei, SQ ;
Ghirlando, R ;
Lee, MS ;
Craigie, R ;
Gronenborn, AM ;
Clore, GM .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (10) :903-909
[6]   Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization [J].
Clore, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9021-9025
[7]   Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude [J].
Clore, GM ;
Gronenborn, AM ;
Tjandra, N .
JOURNAL OF MAGNETIC RESONANCE, 1998, 131 (01) :159-162
[8]   New methods of structure refinement for macromolecular structure determination by NMR [J].
Clore, GM ;
Gronenborn, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :5891-5898
[9]   Protein structure determination using molecular fragment replacement and NMR dipolar couplings [J].
Delaglio, F ;
Kontaxis, G ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (09) :2142-2143
[10]   Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data [J].
Dosset, P ;
Hus, JC ;
Blackledge, M ;
Marion, D .
JOURNAL OF BIOMOLECULAR NMR, 2000, 16 (01) :23-28