Predicting the chaos and solution bounds in a complex dynamical system

被引:11
作者
Chien, Fengsheng [1 ,2 ]
Inc, Mustafa [3 ,4 ,5 ]
Yosefzade, Hamidreza [6 ]
Nik, Hassan Saberi [7 ]
机构
[1] Fuzhou Univ Int Studies & Trade, Sch Finance & Accounting, Fuzhou 352020, Peoples R China
[2] City Univ Macau, Fac Business, Macau 999078, Peoples R China
[3] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[4] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Payame Noor Univ PNU, Dept Math, POB 19395-4697, Tehran, Iran
[7] Univ Neyshabur, Dept Math & Stat, Neyshabur, Iran
关键词
Nonlinear chaotic complex system; Explicit ultimate bound; Lagrange multiplier method; Optimization; HYPERCHAOTIC SYSTEM; COMPETITIVE MODES; LORENZ; SYNCHRONIZATION; SETS;
D O I
10.1016/j.chaos.2021.111474
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The competitive modes for a nonlinear chaotic complex system are studied in this paper. In hyperchaotic, chaotic, and periodic cases, we examined competitive modes that are a tool for detecting chaos in a system. Also, using an analytical method and Lagrange optimization, we were able to calculate the ultimate bound of the nonlinear chaotic complex systems. We have presented is simpler and more accurate than other methods that implicitly calculate the ultimate bound. The estimation of the explicit ultimate bound can be used to study chaos control and chaos synchronization. Numerical simulations illustrate the analytical results. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 21 条
[1]   Chaos in a 5-D hyperchaotic system with four wings in the light of non-local and non-singular fractional derivatives [J].
Bonyah, Ebenezer .
CHAOS SOLITONS & FRACTALS, 2018, 116 :316-331
[2]   A Chaotic Chemical Reactor With and Without Delay: Bifurcations, Competitive Modes, and Amplitude Death [J].
Choudhury, S. Roy ;
Mandragona, Daniel .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (02)
[3]   Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors [J].
Choudhury, S. Roy ;
Van Gorder, Robert A. .
NONLINEAR DYNAMICS, 2012, 69 (04) :2255-2267
[4]   Partial chaos suppression in a fractional order macroeconomic model [J].
David, S. A. ;
Machado, J. A. T. ;
Quintino, D. D. ;
Balthazar, J. M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 122 :55-68
[5]   Ultimate bound estimation set and chaos synchronization for a financial risk system [J].
Gao, Wei ;
Yan, Li ;
Saeedi, Mohammadhossein ;
Nik, Hassan Saberi .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 154 :19-33
[6]  
Leonov G., 2001, St. Petersburg Math. J., V13, P1
[7]   Lyapunov functions in the attractors dimension theory [J].
Leonov, G. A. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2012, 76 (02) :129-141
[8]   LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM [J].
LEONOV, GA ;
BUNIN, AI ;
KOKSCH, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12) :649-656
[9]   Chaotic and hyperchaotic attractors of a complex nonlinear system [J].
Mahmoud, Gamal M. ;
Al-Kashif, M. A. ;
Farghaly, A. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (05)
[10]   New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system [J].
Nik, H. Saberi ;
Effati, S. ;
Saberi-Nadjafi, J. .
JOURNAL OF COMPLEXITY, 2015, 31 (05) :715-730