Averaging methods for finding periodic orbits via Brouwer degree

被引:267
作者
Buica, A
Llibre, J [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Babes Bolyai, Dept Appl Math, R-3400 Cluj Napoca, Romania
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2004年 / 128卷 / 01期
关键词
periodic solution; averaging method; Brouwer degree;
D O I
10.1016/j.bulsci.2003.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of finding T-periodic solutions for a differential system whose vector field depend on a small parameter E. An answer to this problem can be given using the averaging method. Our main results are in this direction, but our approach is new. We use topological methods based on Brouwer degree theory to solve operator equations equivalent to this problem. The regularity assumptions are weaker then in the known results (up to second order in epsilon). A result for third order averaging method is also given. As an application we provide a way to study bifurcations of limit cycles from the period annulus of a planar system and notice relations with the displacement function. A concrete example is given. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:7 / 22
页数:16
相关论文
共 16 条
[1]  
Bautin N., 1954, AM MATH SOC TRANSL, V100, P397
[2]   FIXED-POINT THEORY AND NON-LINEAR PROBLEMS [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (01) :1-39
[3]  
BUICA A, 2000, PURE MATH APPL, V11, P153
[4]  
Buica A., 2001, Principii de coincidenta si aplicatii
[5]  
Chavarriga J., 1999, QUAL THEORY DYN SYST, V1, P1, DOI DOI 10.1007/BF02969404
[6]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES [J].
CHICONE, C ;
JACOBS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :268-326
[7]  
Chow SN., 1994, Normal forms and Bifurcation of planar vector fields, DOI 10.1017/CBO9780511665639
[8]   IMPROVED NTH ORDER AVERAGING THEORY FOR PERIODIC-SYSTEMS [J].
ELLISON, JA ;
SAENZ, AW ;
DUMAS, HS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :383-403
[9]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[10]  
Hartono, 2003, NONLINEAR ANAL-THEOR, V52, P1727, DOI 10.1016/S0362-546X(02)00285-7