A fractional Kirchhoff-type problem in RN without the (AR) condition

被引:5
作者
Xiang, Mingqi [1 ]
Zhang, Binlin [2 ]
Yang, Miaomiao [3 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin, Peoples R China
[3] Qilu Univ Technol, Sch Sci, Jinan, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Fractional Laplacian; Kirchhoff-type problem; variational methods; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE; MULTIPLICITY; AMBROSETTI; LAPLACIAN; COMPACTNESS; EQUATIONS; SYMMETRY;
D O I
10.1080/17476933.2016.1182519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper was to investigate the existence of radial solutions for a Kirchhoff-type problem driven by the fractional Laplacian, that is [a + b(integral(RN) vertical bar(- Delta)(s/2) u(x)vertical bar(2)dx + integral(RN) vertical bar u vertical bar(2)dx)(theta-1)] x [(- Delta)(s) u + u] = f (u) in R-N, where (- Delta)(s) is the fractional Laplacian operator with 0 < s < 1 and 2s < N, theta > 1 and a > 0 are constants, b >= 0 is a parameter and f is an element of C(R, R) without the Ambrosetti-Rabinowitz condition. The existence of nontrivial nonnegative radial solutions is obtained using variational methods combined with a cut-off function technique.
引用
收藏
页码:1481 / 1493
页数:13
相关论文
共 38 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
[Anonymous], 1997, Minimax theorems
[3]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[4]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[5]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[6]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[7]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[8]   A bifurcation result for non-local fractional equations [J].
Bisci, Giovanni Molica ;
Servadei, Raffaella .
ANALYSIS AND APPLICATIONS, 2015, 13 (04) :371-394
[9]  
Caffarelli L., 2012, NONLINEAR PARTIAL DI, P37
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260