Image metrics in the statistical analysis of DNA microarray data

被引:83
作者
Brown, CS
Goodwin, PC
Sorger, PK
机构
[1] MIT, BioMicro Ctr, Dept Biol, Cambridge, MA 02139 USA
[2] Harvard Univ, Inst Chem & Cell Biol, Cambridge, MA 02139 USA
[3] Appl Precis Inc, Biotechnol Grp, Issaquah, WA 98027 USA
关键词
D O I
10.1073/pnas.161242998
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA microarrays represent an important new method for determining the complete expression profile of a cell. In "spotted" microarrays, slides carrying spots of target DNA are hybridized to fluorescently labeled cDNA from experimental and control cells and the arrays are imaged at two or more wavelengths. In this paper, we perform statistical analysis on images of microarrays and show that quantitating the amount of fluorescent DNA bound to microarrays is subject to considerable uncertainty because of large and small-scale intensity fluctuations within spots, nonadditive background, and fabrication artifacts. Pixel-by-pixel analysis of individual spots can be used to estimate these sources of error and establish the precision and accuracy with which gene expression ratios are determined. Simple weighting schemes based on these estimates are effective in improving significantly the quality of microarray data as it accumulates in a multiexperiment database. We propose that error estimates from image-based metrics should be one component in an explicitly probabilistic scheme for the analysis of DNA microarray data.
引用
收藏
页码:8944 / 8949
页数:6
相关论文
共 50 条
[21]   Combinatorial image analysis of DNA microarray features [J].
Glasbey, CA ;
Ghazal, P .
BIOINFORMATICS, 2003, 19 (02) :194-203
[22]   Statistical data analysis for software metrics validation [J].
Lee, MC .
KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 4, PROCEEDINGS, 2005, 3684 :389-395
[23]   Statistical Learning Analysis of Thyroid Cancer Microarray Data [J].
Petrini, Ivan ;
Cecchini, Rocio L. ;
Mascaro, Marilina ;
Ponzoni, Ignacio ;
Carballido, Jessica A. .
BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, :90-102
[24]   Statistical design and the analysis of gene expression microarray data [J].
Kerr, MK ;
Churchill, GA .
GENETICAL RESEARCH, 2001, 77 (02) :123-128
[25]   Implementation of a statistical linear model for microarray data analysis [J].
Greer, KA ;
Hoying, JB .
FASEB JOURNAL, 2003, 17 (04) :A78-A78
[26]   MIDAW: a web tool for statistical analysis of microarray data [J].
Romualdi, C ;
Vitulo, N ;
Favero, MD ;
Lanfranchi, G .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W644-W649
[27]   GenePublisher: automated analysis of DNA microarray data [J].
Knudsen, S ;
Workman, C ;
Sicheritz-Ponten, T ;
Friis, C .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3471-3476
[28]   Metric learning for DNA microarray data analysis [J].
Takeuchi, Ichiro ;
Nakagawa, Masao ;
Seto, Masao .
INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2009 (IW-SMI 2009), 2009, 197
[29]   Fuzzy Biclustering for DNA Microarray Data Analysis [J].
Han, Lixin ;
Yan, Hong .
2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, :1134-+
[30]   Computational approaches to analysis of DNA microarray data [J].
Quackenbush, J. .
METHODS OF INFORMATION IN MEDICINE, 2006, 45 :91-103